锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类型却很少被提及。本系列文章将分析JAVA下常见的锁名称以及特性,为大家答疑解惑。

1、自旋锁

自旋锁是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。如下

复制代码代码如下:
public class SpinLock {

private AtomicReference<Thread> sign =new AtomicReference<>();

public void lock(){
    Thread current = Thread.currentThread();
    while(!sign .compareAndSet(null, current)){
    }
  }

public void unlock (){
    Thread current = Thread.currentThread();
    sign .compareAndSet(current, null);
  }
}

使用了CAS原子操作,lock函数将owner设置为当前线程,并且预测原来的值为空。unlock函数将owner设置为null,并且预测值为当前线程。

当有第二个线程调用lock操作时由于owner值不为空,导致循环一直被执行,直至第一个线程调用unlock函数将owner设置为null,第二个线程才能进入临界区。

由于自旋锁只是将当前线程不停地执行循环体,不进行线程状态的改变,所以响应速度更快。但当线程数不停增加时,性能下降明显,因为每个线程都需要执行,占用CPU时间。如果线程竞争不激烈,并且保持锁的时间段。适合使用自旋锁。

注:该例子为非公平锁,获得锁的先后顺序,不会按照进入lock的先后顺序进行。

2.自旋锁的其他种类

上文我们讲到了自旋锁,在自旋锁中 另有三种常见的锁形式:TicketLock ,CLHlock 和MCSlock

Ticket锁主要解决的是访问顺序的问题,主要的问题是在多核cpu上:

复制代码代码如下:
package com.alipay.titan.dcc.dal.entity;

import java.util.concurrent.atomic.AtomicInteger;

public class TicketLock {
    private AtomicInteger                     serviceNum = new AtomicInteger();
    private AtomicInteger                     ticketNum  = new AtomicInteger();
    private static final ThreadLocal<Integer> LOCAL      = new ThreadLocal<Integer>();

public void lock() {
        int myticket = ticketNum.getAndIncrement();
        LOCAL.set(myticket);
        while (myticket != serviceNum.get()) {
        }

}

public void unlock() {
        int myticket = LOCAL.get();
        serviceNum.compareAndSet(myticket, myticket + 1);
    }
}

每次都要查询一个serviceNum 服务号,影响性能(必须要到主内存读取,并阻止其他cpu修改)。

CLHLock 和MCSLock 则是两种类型相似的公平锁,采用链表的形式进行排序。

复制代码代码如下:
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;

public class CLHLock {
    public static class CLHNode {
        private volatile boolean isLocked = true;
    }

@SuppressWarnings("unused")
    private volatile CLHNode                                           tail;
    private static final ThreadLocal<CLHNode>                          LOCAL   = new ThreadLocal<CLHNode>();
    private static final AtomicReferenceFieldUpdater<CLHLock, CLHNode> UPDATER = AtomicReferenceFieldUpdater.newUpdater(CLHLock.class,
                                                                                   CLHNode.class, "tail");

public void lock() {
        CLHNode node = new CLHNode();
        LOCAL.set(node);
        CLHNode preNode = UPDATER.getAndSet(this, node);
        if (preNode != null) {
            while (preNode.isLocked) {
            }
            preNode = null;
            LOCAL.set(node);
        }
    }

public void unlock() {
        CLHNode node = LOCAL.get();
        if (!UPDATER.compareAndSet(this, node, null)) {
            node.isLocked = false;
        }
        node = null;
    }
}

CLHlock是不停的查询前驱变量, 导致不适合在NUMA 架构下使用(在这种结构下,每个线程分布在不同的物理内存区域)

MCSLock则是对本地变量的节点进行循环。不存在CLHlock 的问题。

复制代码代码如下:
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;

public class MCSLock {
    public static class MCSNode {
        volatile MCSNode next;
        volatile boolean isLocked = true;
    }

private static final ThreadLocal<MCSNode>                          NODE    = new ThreadLocal<MCSNode>();
    @SuppressWarnings("unused")
    private volatile MCSNode                                           queue;
    private static final AtomicReferenceFieldUpdater<MCSLock, MCSNode> UPDATER = AtomicReferenceFieldUpdater.newUpdater(MCSLock.class,
                                                                                   MCSNode.class, "queue");

public void lock() {
        MCSNode currentNode = new MCSNode();
        NODE.set(currentNode);
        MCSNode preNode = UPDATER.getAndSet(this, currentNode);
        if (preNode != null) {
            preNode.next = currentNode;
            while (currentNode.isLocked) {

}
        }
    }

public void unlock() {
        MCSNode currentNode = NODE.get();
        if (currentNode.next == null) {
            if (UPDATER.compareAndSet(this, currentNode, null)) {

} else {
                while (currentNode.next == null) {
                }
            }
        } else {
            currentNode.next.isLocked = false;
            currentNode.next = null;
        }
    }
}

从代码上 看,CLH 要比 MCS 更简单,

CLH 的队列是隐式的队列,没有真实的后继结点属性。

MCS 的队列是显式的队列,有真实的后继结点属性。

JUC ReentrantLock 默认内部使用的锁 即是 CLH锁(有很多改进的地方,将自旋锁换成了阻塞锁等等)。

(全文完)

Java锁之自旋锁详解的更多相关文章

  1. java - 锁的种类及详解

    锁类型 锁根据其特性能够划分出各种各样的锁类型,该文主要介绍以下锁的作用及特性 乐观锁/悲观锁 独享锁/共享锁 互斥锁/读写锁 可重入锁 公平锁/非公平锁 分段锁 偏向锁/轻量级锁/重量级锁 自旋锁 ...

  2. Java精通并发-轻量级锁与重量级锁的变化深入详解

    在上一次https://www.cnblogs.com/webor2006/p/11446129.html的理论的最后谈到了锁的演化,如下: 下面具体来阐述一下: 偏向锁:它是针对一个线程来说, 它的 ...

  3. Java 多线程之自旋锁

    一.什么是自旋锁? 自旋锁(spinlock):是指当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取,直到获取到锁才会退出循环. 获取锁的线 ...

  4. java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁(转载)

    之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...

  5. java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁

    之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...

  6. Java锁---偏向锁、轻量级锁、自旋锁、重量级锁

    之前做过一个测试,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高(当时感觉它的效率应该是最差才对): 2. AtomicInteger效率最不稳定,不同并发情况下表 ...

  7. Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等

    Java 中15种锁的介绍 Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等,在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类 ...

  8. 通俗易懂 悲观锁、乐观锁、可重入锁、自旋锁、偏向锁、轻量/重量级锁、读写锁、各种锁及其Java实现!

    网上关于Java中锁的话题可以说资料相当丰富,但相关内容总感觉是一大串术语的罗列,让人云里雾里,读完就忘.本文希望能为Java新人做一篇通俗易懂的整合,旨在消除对各种各样锁的术语的恐惧感,对每种锁的底 ...

  9. 写文章 通俗易懂 悲观锁、乐观锁、可重入锁、自旋锁、偏向锁、轻量/重量级锁、读写锁、各种锁及其Java实现!

    网上关于Java中锁的话题可以说资料相当丰富,但相关内容总感觉是一大串术语的罗列,让人云里雾里,读完就忘.本文希望能为Java新人做一篇通俗易懂的整合,旨在消除对各种各样锁的术语的恐惧感,对每种锁的底 ...

  10. Java锁之自旋锁

    Java锁之自旋锁 自旋锁:spinlock,是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU 原来提到的比较并交换,底层 ...

随机推荐

  1. z-index详解

    来源于:http://www.cnblogs.com/ForEvErNoME/p/3373641.html 概念 z-index 属性设置元素的堆叠顺序.拥有更高堆叠顺序的元素总是会处于堆叠顺序较低的 ...

  2. [转载]VS2012编译C语言scanf函数error的解决方法

    在VS 2012 中编译 C 语言项目,如果使用了 scanf 函数,编译时便会提示如下错误: error C4996: 'scanf': This function or variable may ...

  3. IntelliJ IDEA 设置 编辑器字体大小

    1,打开File->settings 2,在Edit->colors->Fonts下创建新字体 保存即可.

  4. 6.Android之switch和togglebutton按钮学习

    Switch和ToggleButton按钮在手机上也经常看到,比如手机设置里面wlan,蓝牙,gps开关等. 首先在工具上拖进一个switch和togglebutton开关按钮,如图 生成xml代码如 ...

  5. 从TP、FP、TN、FN到ROC曲线、miss rate、行人检测评估

    从TP.FP.TN.FN到ROC曲线.miss rate.行人检测评估 想要在行人检测的evaluation阶段要计算miss rate,就要从True Positive Rate讲起:miss ra ...

  6. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  7. Bzoj2440 完全平方数

    Time Limit: 10000MS   Memory Limit: 131072KB   64bit IO Format: %lld & %llu Description 小 X 自幼就很 ...

  8. CoreOS Architecture Learning

    目录 . CoreOS简介 . CoreOS部署.安装.使用 . CoreOS命令使用 1. CoreOS简介 0x1: CoreOS和Docker的关系 我们先来看一张Docker的架构图

  9. Linux中断技术、门描述符、IDT(中断描述符表)、异常控制技术总结归类

    相关学习资料 <深入理解计算机系统(原书第2版)>.pdf http://zh.wikipedia.org/zh/%E4%B8%AD%E6%96%B7 独辟蹊径品内核:Linux内核源代码 ...

  10. MAC OS下安装Erlang

    这是个很大的问题,也是个很小的问题,恩.因为我最终解决方案是用了别人写的工具,名叫erlbrew: https://github.com/mrallen1/erlbrew 按照页面上的指导安装使用即可 ...