codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接:
E. ZS and The Birthday Paradox、
2 seconds
256 megabytes
standard input
standard output
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction
. He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?
The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.
If the probability of at least two k people having the same birthday in 2n days long year equals
(A ≥ 0, B ≥ 1,
), print the A and B in a single line.
Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo106 + 3 are taken.
3 2
1 8
1 3
1 1
4 3
23 128 题意: 一年有2^n天,现在有k个熊孩子,问至少有两个熊孩子的生日是同一天的概率是多少; 思路: 1-2^n*(2^n-1)*...*(2^n-k+1)/(2^n)^k,然后就是求gcd了,约分后再求逆元,反正这个题涉及的知识点有概率论与组合数学,抽屉原理,勒让德定理,求逆元,快速幂这些,反正我是看别人代码才会的,我好菜啊; AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e6+3;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=2e5+10;
const int maxn=1e3+520;
const double eps=1e-12; LL n,k; int check()
{
LL s=1;
for(int i=1;i<=n;i++)
{
s=s*2;
if(s>=k)return 0;
}
return 1;
}
LL pow_mod(LL x,LL y)
{
LL s=1,base=x;
while(y)
{
if(y&1)s=s*base%mod;
base=base*base%mod;
y>>=1;
}
return s;
}
int main()
{
read(n);read(k);
if(check()){cout<<"1 1\n";return 0;}
LL num=0;
for(LL i=k-1;i>0;i/=2)num+=i/2;
LL temp=pow_mod(2,n),ans=1;
for(LL i=1;i<k;i++)
{
ans=ans*(temp-i)%mod;
if(temp-i==0)break;
}
LL ha=pow_mod(2,num);
ans=ans*pow_mod(ha,mod-2)%mod;
temp=pow_mod(temp,k-1)*pow_mod(ha,mod-2)%mod;
cout<<(temp-ans+mod)%mod<<" "<<temp<<endl; return 0;
}
codeforces 711E E. ZS and The Birthday Paradox(数学+概率)的更多相关文章
- 【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- Codeforces 711E ZS and The Birthday Paradox 数学
ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...
- ZS and The Birthday Paradox
ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...
- CF369E. ZS and The Birthday Paradox
/* cf369E. ZS and The Birthday Paradox http://codeforces.com/contest/711/problem/E 抽屉原理+快速幂+逆元+勒让德定理 ...
- 【Codeforces711E】ZS and The Birthday Paradox [数论]
ZS and The Birthday Paradox Time Limit: 20 Sec Memory Limit: 512 MB Description Input Output Sample ...
- Codeforces 711E ZS and The Birthday Paradox
传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...
- Codeforces 711E ZS and The Birthday Paradox(乘法逆元)
[题目链接] http://codeforces.com/problemset/problem/711/E [题目大意] 假设一年有2^n天,问k个小朋友中有两个小朋友生日相同的概率. 假设该概率约分 ...
- codeforces 711E. ZS and The Birthday Paradox 概率
已知一年365天找23个人有2个人在同一天生日的概率 > 50% 给出n,k ,表示现在一年有2^n天,找k个人,有2个人在同一天生日的概率,求出来的概率是a/b形式,化到最简形式,由于a,b可 ...
随机推荐
- jxl导出Excel文件
一.java项目实现读取Excel文件和导出Excel文件 实现读取和导出Excel文件的代码: package servlet; import java.io.FileInputStream; im ...
- [原创]html5_PC游戏_图片俄罗斯方块
PC游戏_图片俄罗斯方块 以前的了,快一年了... 使用了离线canvas复制的方法,启动预览效果需要服务器支持 另外,AC娘图片可以自己做加载功能,这样游戏图片显示更顺畅 效果: --- 代码: h ...
- JS框架的一些小总结
闭包结构 为了防止和别的库的冲突,用闭包把整个框架安全地保护好. 我们待会的代码都写在里面.这里创建一个全局变量"window.O",就是在window对象里加个O,它等价于 &q ...
- 转:jQuery 常见操作实现方式
http://www.cnblogs.com/guomingfeng/articles/2038707.html 一个优秀的 JavaScript 框架,一篇 jQuery 常用方法及函数的文章留存备 ...
- Spring(九)Spring对事务的支持
一.对事务的支持 事务:是一组原子操作的工作单元,要么全部成功,要么全部失败 Spring管理事务方式: JDBC编程事务管理:--可以控制到代码中的行 可以清楚的控制事务的边界,事务控制粒度化细(编 ...
- Spring概述
layout: post title: Spring概述 tags: [Java,Spring,IOC,AOP] --- Spring是一个开源的轻量级Java SE(Java 标准版本)/Java ...
- iOS之 PJSIP静态库编译(二)
咱们书接上回: 上一篇编译好了PJsip这次我们来点实战 上次编译过后就不必做别的修改因为ios平台的库都支持了. 打开工程 找到 pjsip- apps/src/pjsua/ios/ipjsua ...
- iOS开发之网络编程--获取文件的MIMEType
前言:有时候我们需要获取文件的MIMEType的信息,下面就介绍关于获取MIMEType的方法. 1.直接百度搜索关键字"MIMEType",你会找到,然后查吧: 2.用代码获取文 ...
- Objective-C的可变是如何实现的?
Objective-C的可变是怎么实现的?
- UVa 112 - Tree Summing(树的各路径求和,递归)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...