Shanghai Hypercomputers, the world's largest computer chip manufacturer, has invented a new class
of nanoparticles called Amphiphilic Carbon Molecules (ACMs). ACMs are semiconductors. It means
that they can be either conductors or insulators of electrons, and thus possess a property that is very
important for the computer chip industry. They are also amphiphilic molecules, which means parts
of them are hydrophilic while other parts of them are hydrophobic. Hydrophilic ACMs are soluble
in polar solvents (for example, water) but are insoluble in nonpolar solvents (for example, acetone).
Hydrophobic ACMs, on the contrary, are soluble in acetone but insoluble in water. Semiconductor
ACMs dissolved in either water or acetone can be used in the computer chip manufacturing process.
Fig.1
As a materials engineer at Shanghai
Hypercomputers, your job is to prepare
ACM solutions from ACM particles. You
go to your factory everyday at 8 am and
nd a batch of ACM particles on your
workbench. You prepare the ACM so-
lutions by dripping some water, as well
as some acetone, into those particles and
watch the ACMs dissolve in the solvents.
You always want to prepare unmixed solu-
tions, so you rst separate the ACM parti-
cles by placing an Insulating Carbon Par-
tition Card (ICPC) perpendicular to your
workbench. The ICPC is long enough to
completely separate the particles. You then drip water on one side of the ICPC and acetone on the
other side. The ICPC helps you obtain hydrophilic ACMs dissolved in water on one side and hydropho-
bic ACMs dissolved in acetone on the other side. If you happen to put the ICPC on top of some ACM
particles, those ACMs will be right at the border between the water solution and the acetone solution,
and they will be dissolved. Fig.1 shows your working situation.
Your daily job is very easy and boring, so your supervisor makes it a little bit more challenging by
asking you to dissolve as much ACMs into solution as possible. You know you have to be very careful
about where to put the ICPC since hydrophilic ACMs on the acetone side, or hydrophobic ACMs on
the water side, will not dissolve. As an experienced engineer, you also know that sometimes it can be
very difficult to nd the best position for the ICPC, so you decide to write a program to help you. You
have asked your supervisor to buy a special digital camera and have it installed above your workbench,
so that your program can obtain the exact positions and species (hydrophilic or hydrophobic) of each
ACM particle in a 2D pictures taken by the camera. The ICPC you put on your workbench will appear
as a line in the 2D pictures.
Input
There will be no more than 10 test cases. Each case starts with a line containing an integer N, which
is the number of ACM particles in the test case. N lines then follow. Each line contains three integers
x, y, r, where (x; y) is the position of the ACM particle in the 2D picture and r can be 0 or 1, standing
for the hydrophilic or hydrophobic type ACM respectively. The absolute value of x, y will be no larger
than 10000. You may assume that N is no more than 1000. N = 0 signies the end of the input and
need not be processed.
Output
For each test case, output a line containing a single integer, which is the maximum number of dissolved
ACM particles.
Note: Fig.2 shows the positions of ACM particles and the best ICPC position for the last test case in
the sample input.

 #include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define M(a) memset(a,0,sizeof(a))
struct pnt
{
int x,y;
bool b;
double k;
}a[],t[];
bool cmp(const pnt &a,const pnt &b)
{
return a.k<b.k;
}
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int i,j,k,m,n,p,q,x,y,z,ans,l,r,cnt;
while (scanf("%d",&n)&&n)
{
M(a);
M(t);
for (i=;i<=n;i++)
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].b);
if (n<=)
{
printf("%d\n",n);
continue;
}
ans=-;
for (i=;i<=n;i++)
{
k=;
for (j=;j<=n;j++)
if (i!=j)
{
k++;
t[k].x=a[j].x-a[i].x;
t[k].y=a[j].y-a[i].y;
if (a[j].b)
{
t[k].x=-t[k].x;
t[k].y=-t[k].y;
}
t[k].k=atan2(t[k].y,t[k].x);
}
sort(t+,t+k+,cmp);
for (l=,r=,cnt=;l<=k;l++)
{
if (r==l)
{
r=r%k+;
cnt++;
}
while (r!=l&&t[l].y*t[r].x<=t[l].x*t[r].y)
{
r=r%k+;
cnt++;
}
cnt--;
ans=max(ans,cnt);
}
}
printf("%d\n",ans);
}
}

题目里先后出现了ACM和ICPC,这一定只是巧合。

没有什么特殊的算法,但不好想,也有很多细节容易写错。

一定存在某种最优情况,分界线至少经过两个点。否则可以平移它使它经过两个点而不减少答案数。

对每个黑点,作关于原点(即枚举的那个点)的对称点,问题就转化为计算一边的点的个数。

枚举每个点,以该点为原点计算每个点的位置,按角度从小到大排序(不能直接用斜率k=tan,否则y轴上的点会出错。)于是用滑动窗口一边进一边出,枚举分界线的另一个点,每滑过左边的一个点就向右边滑动,由于每个点都会作为起点和终点滑过一次,算上排序,复杂度为O(nlogn)。避免O(n^2)的枚举+判断。

总复杂度为O(n^2logn)。

计数和滑动的地方容易写错,而且要考虑绕圈。

uva 1606 amphiphilic carbon molecules【把缩写写出来,有惊喜】(滑动窗口)——yhx的更多相关文章

  1. 【极角排序、扫描线】UVa 1606 - Amphiphilic Carbon Molecules(两亲性分子)

    Shanghai Hypercomputers, the world's largest computer chip manufacturer, has invented a new class of ...

  2. UVa 1606 - Amphiphilic Carbon Molecules

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 1606 Amphiphilic Carbon Molecules 两亲性分子 (极角排序或叉积,扫描法)

    任意线可以贪心移动到两点上.直接枚举O(n^3),会TLE. 所以采取扫描法,选基准点,然后根据极角或者两两做叉积比较进行排排序,然后扫一遍就好了.旋转的时候在O(1)时间推出下一种情况,总复杂度为O ...

  4. UVa 1606 Amphiphilic Carbon Molecules (扫描法+极角排序)

    题意:平面上有 n 个点,每个点不是黑的就是白的,现在要放一个隔板,把它们分成两部分,使得一侧的白点数加上另一侧的黑点数最多. 析:这个题很容易想到的就是暴力,不妨假设隔板至少经过两个点,即使不经过也 ...

  5. UVA - 1606 Amphiphilic Carbon Molecules 极角扫描法

    题目:点击查看题目 思路:这道题的解决思路是极角扫描法.极角扫描法的思想主要是先选择一个点作为基准点,然后求出各点对于该点的相对坐标,同时求出该坐标系下的极角,按照极角对点进行排序.然后选取点与基准点 ...

  6. UVA - 1606 Amphiphilic Carbon Molecules (计算几何,扫描法)

    平面上给你一些具有黑或白颜色的点,让你设置一个隔板,使得隔板一侧的黑点加上另一侧的白点数最多.隔板上的点可视作任意一侧. 易知一定存在一个隔板穿过两个点且最优,因此可以先固定以一个点为原点,将其他点中 ...

  7. UVA - 1606 Amphiphilic Carbon Molecules(两亲性分子)(扫描法)

    题意:平面上有n(n <= 1000)个点,每个点为白点或者黑点.现在需放置一条隔板,使得隔板一侧的白点数加上另一侧的黑点数总数最大.隔板上的点可以看做是在任意一侧. 分析:枚举每个基准点i,将 ...

  8. 【UVa】1606 Amphiphilic Carbon Molecules(计算几何)

    题目 题目 分析 跟着lrj学的,理解了,然而不是很熟,还是发上来供以后复习 代码 #include <bits/stdc++.h> using namespace std; ; stru ...

  9. UVa 1606 (极角排序) Amphiphilic Carbon Molecules

    如果,没有紫书上的翻译的话,我觉得我可能读不懂这道题.=_=|| 题意: 平面上有n个点,不是白点就是黑点.现在要放一条直线,使得直线一侧的白点与另一侧的黑点加起来数目最多.直线上的点可以看作位于直线 ...

随机推荐

  1. CSS 最核心的四个概念(摘录)

    本文将讲述 CSS 中最核心的几个概念,包括:盒模型.position.float等.这些是 CSS 的基础,也是最常用的几个属性,它们之间看似独立却又相辅相成.为了掌握它们,有必要写出来探讨一下,如 ...

  2. 面向企业客户的制造业CRM系统的不成熟思考

    CRM就是客户关系管理(Customer Relationship Management),一直一知半解,最近有涉及这方面的需求,所以稍作研究,并思考一些相关问题. CRM是什么? CRM具体如何定义 ...

  3. Sass学习之路(4)——不同样式风格的输出方式

    因为每个前端工程师编写代码的风格都不太一样,所以Sass的编译也非常人性化的提供了不同风格的编译方式,主要分为4种. 比如下面这一段Sass代码,我们来看看在不同风格下,会编译成什么样吧: nav { ...

  4. 在sap系统设置纸张打印格式(针式打印机)

    在sap做一个打印报表,要先设置一个纸张打印格式,下面以工厂中常用来打印的针孔纸为例,在sap设置该纸张的打印格式,以用于报表: 1.运行事务代码SPAD:选择工具栏上的[完全管理]按钮——>选 ...

  5. Microsoft Dynamics CRM 前瑞开发

    做CRM开发最大的感受就是其前瑞开发过程中,调试起来比较麻烦,需要做一些断点还要配制一些浏览器设置,对新手来说比较困难.还有就是对REST调试,经常为了调试一个正确的结果而花费大量的时间.现在推荐一个 ...

  6. 用Gradle构建时,将密码等敏感信息放在build.gradle之外

    密码 在做版本release时你app的 build.gradle你需要定义 signingConfigs.此时你应该避免以下内容: 不要做这个 . 这会出现在版本控制中. signingConfig ...

  7. iOS 使用SDwebImage缓存图片并在断网时候显示

     [_loadImageView setShowActivityIndicatorView:YES];    [_loadImageView setIndicatorStyle:UIActivityI ...

  8. iOS开发网络篇—网络编程基础(二)

    下面叙述的是关于几个必须要知道的iOS网络编程入门级别的要点:       1.客户端如何找到连接的服务器    客户端通过URL找到想要连接的服务器   2.什么是URL     URL的全称是Un ...

  9. android中实现view可以滑动的六种方法

    在android开发中,经常会遇到一个view需要它能够支持滑动的需求.今天就来总结实现其滑动的六种方法.其实每一种方法的 思路都是一样的,即:监听手势触摸的坐标来实现view坐标的变化,从而实现vi ...

  10. SQL获取时间段内的所有月份

    select convert(varchar(7),dateadd(month,number,'2010-01-01'),120) AS MONTHfrom master..spt_valueswhe ...