本文来自:http://www.matrix67.com/blog/archives/tag/poj
大牛的博文学习学习

节选如下部分:
矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律
经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转
    这 里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时 O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。 假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以 (x,y,1),即可一步得出最终点的位置。
     
经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。
    由 于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、 A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。

经典题目3 POJ3233 (感谢rmq)
    题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。
    这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有:
    A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)
    应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

经典题目4 VOJ1049
    题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。
    首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:
     

置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。

经典题目5 《算法艺术与信息学竞赛》207页(2.1代数方法和模型,[例题5]细菌,版次不同可能页码有偏差)
    大家自己去看看吧,书上讲得很详细。解题方法和上一题类似,都是用矩阵来表示操作,然后二分求最终状态。

经典题目6 给定n和p,求第n个Fibonacci数mod p的值,n不超过2^31
    根 据前面的一些思路,现在我们需要构造一个2 x 2的矩阵,使得它乘以(a,b)得到的结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x 2的矩阵自乘n次,再乘以(0,1)就可以得到第n个Fibonacci数了。不用多想,这个2 x 2的矩阵很容易构造出来:
     

经典题目7 VOJ1067
    我 们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第 n行填对应的系数,其它地方都填0。例如,我们可以用下面的矩阵乘法来二分计算f(n) = 4f(n-1) - 3f(n-2) + 2f(n-4)的第k项:
     
    利用矩阵乘法求解线性递推关系的题目我能编出一卡车来。这里给出的例题是系数全为1的情况。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值
    把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就 等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的 路径数,我们只需要二分求出A^k即可。

经典题目9 用1 x 2的多米诺骨牌填满M x N的矩形有多少种方案,M<=5,N<2^31,输出答案mod p的结果
     

我 们以M=3为例进行讲解。假设我们把这个矩形横着放在电脑屏幕上,从右往左一列一列地进行填充。其中前n-2列已经填满了,第n-1列参差不齐。现在我们 要做的事情是把第n-1列也填满,将状态转移到第n列上去。由于第n-1列的状态不一样(有8种不同的状态),因此我们需要分情况进行讨论。在图中,我把 转移前8种不同的状态放在左边,转移后8种不同的状态放在右边,左边的某种状态可以转移到右边的某种状态就在它们之间连一根线。注意为了保证方案不重复, 状态转移时我们不允许在第n-1列竖着放一个多米诺骨牌(例如左边第2种状态不能转移到右边第4种状态),否则这将与另一种转移前的状态重复。把这8种状 态的转移关系画成一个有向图,那么问题就变成了这样:从状态111出发,恰好经过n步回到这个状态有多少种方案。比如,n=2时有3种方案,111-& gt;011->111、111->110->111和111->000->111,这与用多米诺骨牌覆盖3x2矩形的方 案一一对应。这样这个题目就转化为了我们前面的例题8。
    后面我写了一份此题的源代码。你可以再次看到位运算的相关应用。

  #include <cstdio>
#define SIZE (1<<m)
#define MAX_SIZE 32
using namespace std; class CMatrix
{
public:
long element[MAX_SIZE][MAX_SIZE];
void setSize(int);
void setModulo(int);
CMatrix operator* (CMatrix);
CMatrix power(int);
private:
int size;
long modulo;
}; void CMatrix::setSize(int a)
{
for (int i=; i<a; i++)
for (int j=; j<a; j++)
element[i][j]=;
size = a;
} void CMatrix::setModulo(int a)
{
modulo = a;
} CMatrix CMatrix::operator* (CMatrix param)
{
CMatrix product;
product.setSize(size);
product.setModulo(modulo);
for (int i=; i<size; i++)
for (int j=; j<size; j++)
for (int k=; k<size; k++)
{
product.element[i][j]+=element[i][k]*param.element[k][j];
product.element[i][j]%=modulo;
}
return product;
} CMatrix CMatrix::power(int exp)
{
CMatrix tmp = (*this) * (*this);
if (exp==) return *this;
else if (exp & ) return tmp.power(exp/) * (*this);
else return tmp.power(exp/);
} int main()
{
const int validSet[]={,,,,,,,};
long n, m, p;
CMatrix unit;
scanf("%d%d%d", &n, &m, &p);
unit.setSize(SIZE);
for(int i=; i<SIZE; i++)
for(int j=; j<SIZE; j++)
if( ((~i)&j) == ((~i)&(SIZE-)) )
{
bool isValid=false;
for (int k=; k<; k++)isValid=isValid||(i&j)==validSet[k];
unit.element[i][j]=isValid;
} unit.setModulo(p);
printf("%d", unit.power(n).element[SIZE-][SIZE-] );
return ;
}

经典题目10 POJ2778
    题目大意是,检测所有可能的n位DNA串有多少个DNA串中不含有指定的病毒片段。合法的DNA只能由ACTG四个字符构成。题目将给出10个以内的病毒片段,每个片段长度不超过10。数据规模n<=2 000 000 000。
    下 面的讲解中我们以ATC,AAA,GGC,CT这四个病毒片段为例,说明怎样像上面的题一样通过构图将问题转化为例题8。我们找出所有病毒片段的前缀,把 n位DNA分为以下7类:以AT结尾、以AA结尾、以GG结尾、以?A结尾、以?G结尾、以?C结尾和以??结尾。其中问号表示“其它情况”,它可以是任 一字母,只要这个字母不会让它所在的串成为某个病毒的前缀。显然,这些分类是全集的一个划分(交集为空,并集为全集)。现在,假如我们已经知道了长度为 n-1的各类DNA中符合要求的DNA个数,我们需要求出长度为n时各类DNA的个数。我们可以根据各类型间的转移构造一个边上带权的有向图。例如,从 AT不能转移到AA,从AT转移到??有4种方法(后面加任一字母),从?A转移到AA有1种方案(后面加个A),从?A转移到??有2种方案(后面加G 或C),从GG到??有2种方案(后面加C将构成病毒片段,不合法,只能加A和T)等等。这个图的构造过程类似于用有限状态自动机做串匹配。然后,我们就 把这个图转化成矩阵,让这个矩阵自乘n次即可。最后输出的是从??状态到所有其它状态的路径数总和。
    题目中的数据规模保证前缀数不超过100,一次矩阵乘法是三方的,一共要乘log(n)次。因此这题总的复杂度是100^3 * log(n),AC了。

总结:
        1. 矩阵满足结合律. 启发思维: A^k求解的时候可以用二分法.
        2. 矩阵可以帮助我们把问题模型抽象出来.
            例如问题一~问题七重复性的操作建立一个矩阵表示每次的操作.
            然后按照矩阵乘积表示重复行的操作求解原问题.
        3. 在路径方面求解问题可以按照临接矩阵, A^k表示从i到j结果k条路可达之类问题.

学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67的更多相关文章

  1. 【转】Matrix67:十个利用矩阵乘法解决的经典题目

    好像目前还没有这方面题目的总结.这几天连续看到四个问这类题目的人,今天在这里简单写一下.这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质.    不要以为数学中的矩阵也是黑色屏幕上不断变化的 ...

  2. [学习笔记]矩阵乘法及其优化dp

    1.定义: $c[i][j]=\sum a[i][k]\times b[k][j]$ 所以矩阵乘法有条件,(n*m)*(m*p)=n*p 即第一个矩阵的列数等于第二个矩阵的行数,否则没有意义. 2.结 ...

  3. B20J_1297_[SCOI2009]迷路_矩阵乘法

    B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...

  4. 【POJ2778】AC自动机+矩阵乘法

    DNA Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14758 Accepted: 5716 Descrip ...

  5. 如何使用矩阵乘法加速动态规划——以[SDOI2009]HH去散步为例

    对这个题目的最初理解 开始看到这个题,觉得很水,直接写了一个最简单地动态规划,就是定义 f[i][j]为到了i节点路径长度为j的路径总数, 转移的话使用Floyd算法的思想去转移,借助这个题目也理解了 ...

  6. 矩阵乘法code

    VOJ1067 我们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,其它地方都填0.例如 ...

  7. 【bzoj2326】[HNOI2011]数学作业 矩阵乘法

    题目描述 题解 矩阵乘法 考虑把相同位数的数放到一起处理: 设有$k$位的数为$[l,r]$,那么枚举从大到小的第$i$个数(即枚举$r-i+1$),考虑其对$Concatenate(l..r)$的贡 ...

  8. 【bzoj4386】[POI2015]Wycieczki 矩阵乘法

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  9. Codevs No.1287 矩阵乘法

    2016-06-01 16:53:23 题目链接: 矩阵乘法 (Codevs No.1287) 题目大意: 给你两个可乘矩阵a,b,求a*b 解法: 定义....... //矩阵乘法 (Codevs ...

随机推荐

  1. Xcode找Library位置

  2. javascript 构造函数方式定义对象

    javascript是动态语言,可以在运行时给对象添加属性,也可以给对象删除(delete)属性 <html> <head> <script type="tex ...

  3. 最新Burpsuite Pro v1.7.03 介绍和破解版下载

    0x00 介绍 Burp Suite 是用于攻击web 应用程序的集成平台.它包含了许多工具,并为这些工具设计了许多接口,以促进加快攻击应用程序的过程.所有的工具都共享一个能处理并显示HTTP 消息, ...

  4. 解决log4j:WARN No appenders could be found for logger (org.springframework.web.context.ContextLoader)警告信息的问题

    spring项目经常在启动tomcat时报如下警告信息: log4j:WARN No appenders could be found for logger (org.springframework. ...

  5. 一个人的Scrum之准备工作

    在2012年里,我想自己一人去实践一下Scrum,所以才有了这么一个开篇. 最近看了<轻松的Scrum之旅>这本书,感觉对我非常有益.书中像讲述故事一样描述了在执行Scrum过程中的点点滴 ...

  6. Effective Java 44 Write doc comments for all exposed API elements

    Principle You must precede every exported class, interface, constructor, method, and field declarati ...

  7. 【mysql】添加对emoji的支持

    1.简介 涉及无线相关的 MySQL 数据库建议都提前采用 utf8mb4 字符集,避免 emoji 表情符号带来的问题 MySQL Server >  5.5.3 2.配置+升级 当前配置 m ...

  8. hibernate一对一关系实现

    按照主键映射,按照外键映射 Address.hbm.xml: <?xml version="1.0"?><!DOCTYPE hibernate-mapping P ...

  9. nginx 做负载均衡

    最近正在研究Nginx,Nginx作为反向代理服务器,可以对Web服务器提供加速,并且具有负载均衡的功能. 首先我要在官网下载Nginx(http://nginx.org/en/download.ht ...

  10. 虚拟机Linux----Ubuntu1204----root登录设置

    说明:装好的ubuntu12.04登录时,默认是看不到root用户的,需要设置一下. 1.先用普通用户登录,打开终端,切换为root用户,如下: su root 2.修改 sudo gedit /et ...