化简一下那个方差得到:$$\sqrt\frac{(\Sigma_{i=1}^nx_i)-n\bar x^2}{n}$$

除了$\Sigma_{i=1}^nx_i$这部分未知,其余已知,而那部分显然越大越好,很容易用DP去转移求得。

  • dp[n][x1][y1][x2][y2]表示当前要切的矩形是(x1,y1,x2,y2)且还需要切n刀得到的最大的那部分的值
  • 通过横竖切来转移,用记忆化搜索很容易实现

WA了好多发,听说有精度问题,一直搞精度,原来一个地方是爆int了。。

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF (1<<29)
int d[][][][][];
int a[][];
int calc(int x1,int y1,int x2,int y2){
int res=;
for(int i=x1; i<=x2; ++i){
for(int j=y1; j<=y2; ++j) res+=a[i][j];
}
return res;
}
int dp(int k,int x1,int y1,int x2,int y2){
if(d[k][x1][y1][x2][y2]!=-) return d[k][x1][y1][x2][y2];
if(k==) return d[k][x1][y1][x2][y2]=calc(x1,y1,x2,y2)*calc(x1,y1,x2,y2);
int res=INF;
for(int i=x1; i<x2; ++i){
res=min(res,dp(k-,x1,y1,i,y2)+calc(i+,y1,x2,y2)*calc(i+,y1,x2,y2));
res=min(res,dp(k-,i+,y1,x2,y2)+calc(x1,y1,i,y2)*calc(x1,y1,i,y2));
}
for(int i=y1; i<y2; ++i){
res=min(res,dp(k-,x1,y1,x2,i)+calc(x1,i+,x2,y2)*calc(x1,i+,x2,y2));
res=min(res,dp(k-,x1,i+,x2,y2)+calc(x1,y1,x2,i)*calc(x1,y1,x2,i));
}
return d[k][x1][y1][x2][y2]=res;
}
int main(){
memset(d,-,sizeof(d));
int n;
scanf("%d",&n);
int sum=;
for(int i=; i<; ++i){
for(int j=; j<; ++j) scanf("%d",&a[i][j]),sum+=a[i][j];
}
double avg=sum*1.0/n;
double ans = sqrt(dp(n-,,,,)*1.0/n-avg*avg);
printf("%.3f\n",ans);
return ;
}

POJ1191 棋盘分割(DP)的更多相关文章

  1. poj1191 棋盘分割【区间DP】【记忆化搜索】

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16263   Accepted: 5812 Description ...

  2. poj1191棋盘分割——区间DP

    题目:http://poj.org/problem?id=1191 分析题意,可知每次要沿棋盘中的一条线把一块一分为二,取其中一块继续分割: σ最小经分析可知即为每块的xi和的平方最小: 故用区间DP ...

  3. poj1191 棋盘分割。 dp

    连接:http://poj.org/problem?id=1191 思路:额,其实就是直接搞记录一下就可以了. #include <stdio.h> #include <string ...

  4. P1436 棋盘分割[dp]

    题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  5. POJ 1191 棋盘分割(DP)

    题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...

  6. POJ1191棋盘分割

    题目:http://poj.org/problem?id=1191 1.分析式子!!! 发现xba是定值,σ的大小仅和∑ xi^2 有关.故dp条件是平方和最小. 2.分出一块就像割掉一条,只需枚举从 ...

  7. NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论

    http://172.20.6.3/Problem_Show.asp?id=1289 除了下标一坨一坨屎一样挺恶心其他都还挺容易的dp,这道题才发现scanf保留小数位是四舍五入的,惊了. f[k][ ...

  8. poj 1191 棋盘分割(dp + 记忆化搜索)

    题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...

  9. POJ1191 棋盘分割

    Time Limit: 1000MS Memory Limit: 10000K Total Submissions: Accepted: 题目链接: http://poj.org/problem?id ...

随机推荐

  1. vim显示行号

    在Linux环境下的编辑器有vi.vim.gedit等等.进入这些编辑器之后,为了方便我们需要编辑器显示出当前的行号,可偏偏编辑器默认是不会显示行号的.我们有二种办法可以解决: 第一种是,手动显示:在 ...

  2. 第15章 使用Postfix与Dovecot收发电子邮件

    章节概述: 本章节从电子邮局系统的组成角色开始讲起,了解MUA.MTA与MDA的作用,熟悉熟悉SMTP.POP3与IMAP4邮局协议. 学习postfix与dovecot服务程序的使用方法并逐条讲解配 ...

  3. [codeforces 325]B. Stadium and Games

    [codeforces 325]B. Stadium and Games 试题描述 Daniel is organizing a football tournament. He has come up ...

  4. [codeforces 528]A. Glass Carving

    [codeforces 528]A. Glass Carving 试题描述 Leonid wants to become a glass carver (the person who creates ...

  5. LNK2005 连接错误解决办法

    nafxcwd.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator new(unsigned int)" (??2@ ...

  6. asp.net 网站 或者web Api 发布

    asp.net 发布iis时可能遇到的内部服务错误常见的有两种: 1.如下图,500.19 Internal Server Error(内部服务错误) 这种错误可能是由于本机的注册表中的asp.net ...

  7. 每天一个命令day1【diff 命令】(具体实例看下一节)

    diff 命令是 linux上非常重要的工具,用于比较文件的内容,特别是比较两个版本不同的文件以找到改动的地方.diff在命令行中打印每一个行的改动.最新版本的diff还支持二进制文件.diff程序的 ...

  8. 轻松架设时时监控工具Cacti

    Cacti是一套基于PHP,MySQL,SNMP及 RRDTool开发的网络流量监测图形分析工具.通过snmpget来获取数据,使用 RRDtool绘画图形,而且你完全可以不需要了解RRDtool复杂 ...

  9. 【leetcode】Implement strStr()

    Implement strStr() Implement strStr(). Returns the index of the first occurrence of needle in haysta ...

  10. eclipse workspace 共享配置文件

    eclipse workspace 共享设置 配置文件记录了原来工程的使用习惯,如字体.编码格式等等,通过拷贝替换达到共享配置的目的. 总结一下,复制工作空间配置步骤如下: 1 使用eclipse新建 ...