前面分析了memblock算法、内核页表的建立、内存管理框架的构建,这些都是x86处理的setup_arch()函数里面初始化的,因地制宜,具有明显处理器的特征。而start_kernel()接下来的初始化则是linux通用的内存管理算法框架了。

build_all_zonelists()用来初始化内存分配器使用的存储节点中的管理区链表,是为内存管理算法(伙伴管理算法)做准备工作的。具体实现:

【file:/mm/page_alloc.c】
/*
* Called with zonelists_mutex held always
* unless system_state == SYSTEM_BOOTING.
*/
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
{
set_zonelist_order(); if (system_state == SYSTEM_BOOTING) {
__build_all_zonelists(NULL);
mminit_verify_zonelist();
cpuset_init_current_mems_allowed();
} else {
#ifdef CONFIG_MEMORY_HOTPLUG
if (zone)
setup_zone_pageset(zone);
#endif
/* we have to stop all cpus to guarantee there is no user
of zonelist */
stop_machine(__build_all_zonelists, pgdat, NULL);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
/*
* Disable grouping by mobility if the number of pages in the
* system is too low to allow the mechanism to work. It would be
* more accurate, but expensive to check per-zone. This check is
* made on memory-hotadd so a system can start with mobility
* disabled and enable it later
*/
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
page_group_by_mobility_disabled = 1;
else
page_group_by_mobility_disabled = 0; printk("Built %i zonelists in %s order, mobility grouping %s. "
"Total pages: %ld\n",
nr_online_nodes,
zonelist_order_name[current_zonelist_order],
page_group_by_mobility_disabled ? "off" : "on",
vm_total_pages);
#ifdef CONFIG_NUMA
printk("Policy zone: %s\n", zone_names[policy_zone]);
#endif
}

首先看到set_zonelist_order():

【file:/mm/page_alloc.c】
static void set_zonelist_order(void)
{
current_zonelist_order = ZONELIST_ORDER_ZONE;
}

此处用于设置zonelist的顺序,ZONELIST_ORDER_ZONE用于表示顺序(-zonetype, [node] distance),另外还有ZONELIST_ORDER_NODE表示顺序([node] distance, -zonetype)。但其仅限于对NUMA环境存在区别,非NUMA环境则毫无差异。

如果系统状态system_state为SYSTEM_BOOTING,系统状态只有在start_kernel执行到最后一个函数rest_init后,才会进入SYSTEM_RUNNING,于是初始化时将会接着是__build_all_zonelists()函数:

【file:/mm/page_alloc.c】
/* return values int ....just for stop_machine() */
static int __build_all_zonelists(void *data)
{
int nid;
int cpu;
pg_data_t *self = data; #ifdef CONFIG_NUMA
memset(node_load, 0, sizeof(node_load));
#endif if (self && !node_online(self->node_id)) {
build_zonelists(self);
build_zonelist_cache(self);
} for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid); build_zonelists(pgdat);
build_zonelist_cache(pgdat);
} /*
* Initialize the boot_pagesets that are going to be used
* for bootstrapping processors. The real pagesets for
* each zone will be allocated later when the per cpu
* allocator is available.
*
* boot_pagesets are used also for bootstrapping offline
* cpus if the system is already booted because the pagesets
* are needed to initialize allocators on a specific cpu too.
* F.e. the percpu allocator needs the page allocator which
* needs the percpu allocator in order to allocate its pagesets
* (a chicken-egg dilemma).
*/
for_each_possible_cpu(cpu) {
setup_pageset(&per_cpu(boot_pageset, cpu), 0); #ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* We now know the "local memory node" for each node--
* i.e., the node of the first zone in the generic zonelist.
* Set up numa_mem percpu variable for on-line cpus. During
* boot, only the boot cpu should be on-line; we'll init the
* secondary cpus' numa_mem as they come on-line. During
* node/memory hotplug, we'll fixup all on-line cpus.
*/
if (cpu_online(cpu))
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
} return 0;
}

其中build_zonelists_node()函数实现:

【file:/mm/page_alloc.c】
/*
* Builds allocation fallback zone lists.
*
* Add all populated zones of a node to the zonelist.
*/
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
int nr_zones)
{
struct zone *zone;
enum zone_type zone_type = MAX_NR_ZONES; do {
zone_type--;
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {
zoneref_set_zone(zone,
&zonelist->_zonerefs[nr_zones++]);
check_highest_zone(zone_type);
}
} while (zone_type); return nr_zones;
}

populated_zone()用于判断管理区zone的present_pages成员是否为0,如果不为0的话,表示该管理区存在页面,那么则通过zoneref_set_zone()将其设置到zonelist的_zonerefs里面,而check_highest_zone()在没有开启NUMA的情况下是个空函数。由此可以看出build_zonelists_node()实则上是按照ZONE_HIGHMEM—>ZONE_NORMAL—>ZONE_DMA的顺序去迭代排布到_zonerefs里面的,表示一个申请内存的代价由低廉到昂贵的顺序,这是一个分配内存时的备用次序。

回到build_zonelists()函数中,而它代码显示将本地的内存管理区进行分配备用次序排序,接着再是分配内存代价低于本地的,最后才是分配内存代价高于本地的。

分析完build_zonelists(),再回到__build_all_zonelists()看一下build_zonelist_cache():

【file:/mm/page_alloc.c】
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
static void build_zonelist_cache(pg_data_t *pgdat)
{
pgdat->node_zonelists[0].zlcache_ptr = NULL;
}

该函数与CONFIG_NUMA相关,用来设置zlcache相关的成员。由于没有开启该配置,故直接设置为NULL。

基于build_all_zonelists()调用__build_all_zonelists()入参为NULL,由此可知__build_all_zonelists()运行的代码是:

for_each_online_node(nid) {

    pg_data_t *pgdat = NODE_DATA(nid);

    build_zonelists(pgdat);

    build_zonelist_cache(pgdat);

}

主要是设置各个内存管理节点node里面各自的内存管理分区zone的内存分配次序。

__build_all_zonelists()接着的是:

for_each_possible_cpu(cpu) {

    setup_pageset(&per_cpu(boot_pageset, cpu), 0);

#ifdef CONFIG_HAVE_MEMORYLESS_NODES
if (cpu_online(cpu))
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif }

其中CONFIG_HAVE_MEMORYLESS_NODES未配置,主要分析一下setup_pageset():

【file:/mm/page_alloc.c】
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
pageset_init(p);
pageset_set_batch(p, batch);
}

setup_pageset()里面调用的两个函数较为简单,就直接过一下。先是:

【file:/mm/page_alloc.c】
static void pageset_init(struct per_cpu_pageset *p)
{
struct per_cpu_pages *pcp;
int migratetype; memset(p, 0, sizeof(*p)); pcp = &p->pcp;
pcp->count = 0;
for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
INIT_LIST_HEAD(&pcp->lists[migratetype]);
}

pageset_init()主要是将struct per_cpu_pages结构体进行初始化,而pageset_set_batch()则是对其进行设置。pageset_set_batch()实现:

【file:/mm/page_alloc.c】
/*
* pcp->high and pcp->batch values are related and dependent on one another:
* ->batch must never be higher then ->high.
* The following function updates them in a safe manner without read side
* locking.
*
* Any new users of pcp->batch and pcp->high should ensure they can cope with
* those fields changing asynchronously (acording the the above rule).
*
* mutex_is_locked(&pcp_batch_high_lock) required when calling this function
* outside of boot time (or some other assurance that no concurrent updaters
* exist).
*/
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
unsigned long batch)
{
/* start with a fail safe value for batch */
pcp->batch = 1;
smp_wmb(); /* Update high, then batch, in order */
pcp->high = high;
smp_wmb(); pcp->batch = batch;
} /* a companion to pageset_set_high() */
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
}

setup_pageset()函数入参p是一个struct per_cpu_pageset结构体的指针,per_cpu_pageset结构是内核的各个zone用于每CPU的页面高速缓存管理结构。该高速缓存包含一些预先分配的页面,以用于满足本地CPU发出的单一内存请求。而struct per_cpu_pages定义的pcp是该管理结构的成员,用于具体页面管理。原本是每个管理结构有两个pcp数组成员,里面的两条队列分别用于冷页面和热页面管理,而当前分析的3.14.12版本已经将两者合并起来,统一管理冷热页,热页面在队列前面,而冷页面则在队列后面。暂且先记着这么多,后续在Buddy算法的时候再详细分析了。

至此,可以知道__build_all_zonelists()是内存管理框架向后续的内存页面管理算法做准备,排布了内存管理区zone的分配次序,同时初始化了冷热页管理。

最后回到build_all_zonelists()函数。由于没有开启内存初始化调试功能CONFIG_DEBUG_MEMORY_INIT,mminit_verify_zonelist()是一个空函数。

基于CONFIG_CPUSETS配置项开启的情况下,而cpuset_init_current_mems_allowed()实现如下:

【file:/kernel/cpuset.c】
void cpuset_init_current_mems_allowed(void)
{
nodes_setall(current->mems_allowed);
}

这里面的current 是一个cpuset的数据结构,用来管理cgroup中的任务能够使用的cpu和内存节点。而成员mems_allowed,该成员是nodemask_t类型的结构体

【file:/include/linux/nodemask.h】
typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t;

该结构其实就是定义了一个位域,每个位对应一个内存结点,如果置1表示该节点内存可用。而nodes_setall则是将这个位域中每个位都置1。

末了看一下build_all_zonelists()里面nr_free_pagecache_pages()的实现:

【file:/mm/page_alloc.c】
/**
* nr_free_pagecache_pages - count number of pages beyond high watermark
*
* nr_free_pagecache_pages() counts the number of pages which are beyond the
* high watermark within all zones.
*/
unsigned long nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}

而里面调用的nr_free_zone_pages()实现为:

【file:/mm/page_alloc.c】
/**
* nr_free_zone_pages - count number of pages beyond high watermark
* @offset: The zone index of the highest zone
*
* nr_free_zone_pages() counts the number of counts pages which are beyond the
* high watermark within all zones at or below a given zone index. For each
* zone, the number of pages is calculated as:
* managed_pages - high_pages
*/
static unsigned long nr_free_zone_pages(int offset)
{
struct zoneref *z;
struct zone *zone; /* Just pick one node, since fallback list is circular */
unsigned long sum = 0; struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); for_each_zone_zonelist(zone, z, zonelist, offset) {
unsigned long size = zone->managed_pages;
unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
} return sum;
}

可以看到nr_free_zone_pages()遍历所有内存管理区并将各管理区的内存空间求和,其实质是用于统计所有的管理区可以用于分配的内存页面数。

接着在build_all_zonelists()后面则是判断当前系统中的内存页框数目,以决定是否启用流动分组机制(Mobility Grouping),该机制可以在分配大内存块时减少内存碎片。通常只有内存足够大时才会启用该功能,否则将会提升消耗降低性能。其中pageblock_nr_pages表示伙伴系统中的最高阶页块所能包含的页面数。

至此,内存管理框架算法基本准备完毕。

Linux-3.14.12内存管理笔记【伙伴管理算法(1)】的更多相关文章

  1. Linux-3.14.12内存管理笔记【伙伴管理算法(4)】

    此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现.页面释放的函数入口是__free_page(),其实则是一个宏定义. 具体实现: [file:/include/linu ...

  2. Linux-3.14.12内存管理笔记【伙伴管理算法(2)】

    前面已经分析了linux内存管理算法(伙伴管理算法)的准备工作. 具体的算法初始化则回到start_kernel()函数接着往下走,下一个函数是mm_init(): [file:/init/main. ...

  3. Linux-3.14.12内存管理笔记【伙伴管理算法(3)】

    前面分析了伙伴管理算法的初始化,在切入分析代码实现之前,例行先分析一下其实现原理. 伙伴管理算法(也称之为Buddy算法),该算法将所有空闲的页面分组划分为MAX_ORDER个页面块链表进行管理,其中 ...

  4. Linux-3.14.12内存管理笔记【构建内存管理框架(1)】

    传统的计算机结构中,整个物理内存都是一条线上的,CPU访问整个内存空间所需要的时间都是相同的.这种内存结构被称之为UMA(Uniform Memory Architecture,一致存储结构).但是随 ...

  5. 2. Linux-3.14.12内存管理笔记【系统启动阶段的memblock算法(2)】

    memory:表示可用可分配的内存: 结束完memblock算法初始化前的准备工作,回到memblock算法初始化及其算法实现上面.memblock是一个很简单的算法. memblock算法的实现是, ...

  6. Linux-3.14.12内存管理笔记【kmalloc与kfree实现】【转】

    本文转载自:http://blog.chinaunix.net/uid-26859697-id-5573776.html kmalloc()是基于slab/slob/slub分配分配算法上实现的,不少 ...

  7. Linux-3.14.12内存管理笔记【构建内存管理框架(5)】

    前面已经分析了内存管理框架的构建实现过程,有部分内容未完全呈现出来,这里主要做个补充. 如下图,这是前面已经看到过的linux物理内存管理框架的层次关系. 现着重分析一下各个管理结构体的成员功能作用. ...

  8. Linux-3.14.12内存管理笔记【建立内核页表(1)】

    前面已经分析过了Intel的内存映射和linux的基本使用情况,已知head_32.S仅是建立临时页表,内核还是要建立内核页表,做到全面映射的.下面就基于RAM大于896MB,而小于4GB ,切CON ...

  9. 1. Linux-3.14.12内存管理笔记【系统启动阶段的memblock算法(1)】

    memblock算法是linux内核初始化阶段的一个内存分配器(它取代了原来的bootmem算法),实现较为简单.负责page allocator初始化之前的内存管理和分配请求. 分析memblock ...

随机推荐

  1. js 获取当前日期和时间

    //显示日期在页面上 yyy-MM-dd function init(){ var date=new Date(); //年 var year=date.getFullYear(); //月 var ...

  2. C# 使用System.Media.SoundPlayer播放wav格式的声音文件

    using System.Media; string szPath = Application.StartupPath + “\\SoundFile\\sound.wav”; SoundPlayer ...

  3. seaborn画出的一些好看的图片

    PYSPARK_DRIVER_PYTHON=/home/zhangyu/anaconda3/bin/jupyter-notebook PYSPARK_DRIVER_PYTHON_OPTS=" ...

  4. 微服务-Springboot+Redis缓存管理接口代码实现

    废话少说,上代码,结合代码讲解: 一.创建maven工程:导入依赖: <packaging>war</packaging><!--修改jdk的版本--><pr ...

  5. Redis面试篇 -- Redis常见性能问题和解决方案?

    master最好不要做任何的持久化工作,如RD内存快照或者AOF日志文件: 如果数据比较重要,某个slave开始AOF备份数据,策略设置为每秒同步1次: 为了主从复制的速度和连接的稳定性,master ...

  6. MySQL 排错-解决MySQL非聚合列未包含在GROUP BY子句报错问题

    排错-解决MySQL非聚合列未包含在GROUP BY子句报错问题 By:授客 QQ:1033553122   测试环境 win10 MySQL 5.7 问题描述: 执行类似以下mysql查询, SEL ...

  7. 数据存储与访问之——SharedPreferences

    使用SharedPreferences(保存用户偏好参数)保存数据, 当我们的应用想要保存用户的一些偏好参数,比如是否自动登陆,是否记住账号密码,是否在Wifi下才能 联网等相关信息,如果使用数据库的 ...

  8. 日常工作中VBA代码积累

    1.超链接地址提取 Function GetURL(rng As Range) As String On Error Resume Next GetURL = rng.Hyperlinks(1).Ad ...

  9. VS2017无法打开Razor视图文件提示:引发类型"System.Exception"异常

    背景介绍 由于电脑装了R#(吃内存大户),导致VS2017打开项目慢以及卡顿,因此在扩展和更新这个功能里面将没用的插件关闭了,导致.NET CORE的Razor视图文件打不开(真心是一脸懵逼,关个插件 ...

  10. SQL Server如何通过Page_ID找到对应的表

    其实本篇文章算是翻译Finding a table name from a page ID这篇文章,只是不想直接翻译.用自己的理解叙说出来.算是对上一篇博客"SQL Server如何找出一个 ...