[b0013] Hadoop 版hello word mapreduce wordcount 运行(三)
目的:
不用任何IDE,直接在linux 下输入代码、调试执行
环境:
Linux Ubuntu
Hadoop 2.6.4
相关:
[b0012] Hadoop 版hello word mapreduce wordcount 运行(二)
最佳:
简单方式:
在当前目录创建类文件,添加后面的内容,但是不包括第一行package
编译:
javac WordCount.java
打包
jar -cvf WordCount.jar ./WordCount*.class
执行
hadoop jar WordCount.jar WordCount /input /output
这种方式不能加package,如果加了package,即使最后一步这样也测试不通过 hadoop jar WordCount.jar 包路径.WordCount /input /output
加package的只能用本文后面的方法
1、准备程序
linux 新建工程文件夹
word, word/src, word/classes
在src下 新建类文件 WordCount.java,添加如下代码,注意第一行的包名,后面用到
package hadoop.mapr; import java.io.IOException;
import java.util.*; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; /**
* 描述:WordCount explains by xxm
* @author xxm
*/
public class WordCount { /**
* Map类:自己定义map方法
*/
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
/**
* LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类
* 都能够被串行化从而便于在分布式环境中进行数据交换,可以将它们分别视为long,int,String 的替代品。
*/
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
/**
* Mapper类中的map方法:
* protected void map(KEYIN key, VALUEIN value, Context context)
* 映射一个单个的输入k/v对到一个中间的k/v对
* Context类:收集Mapper输出的<k,v>对。
*/
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
} /**
* Reduce类:自己定义reduce方法
*/
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { /**
* Reducer类中的reduce方法:
* protected void reduce(KEYIN key, Interable<VALUEIN> value, Context context)
* 映射一个单个的输入k/v对到一个中间的k/v对
* Context类:收集Reducer输出的<k,v>对。
*/
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
} /**
* main主函数
*/
public static void main(String[] args) throws Exception { Configuration conf = new Configuration();//创建一个配置对象,用来实现所有配置
// conf.set("fs.defaultFS", "hdfs://ssmaster:9000/"); Job job = new Job(conf, "wordcount");//新建一个job,并定义名称 job.setOutputKeyClass(Text.class);//为job的输出数据设置Key类
job.setOutputValueClass(IntWritable.class);//为job输出设置value类 job.setMapperClass(Map.class); //为job设置Mapper类
job.setReducerClass(Reduce.class);//为job设置Reduce类
job.setJarByClass(WordCount.class); job.setInputFormatClass(TextInputFormat.class);//为map-reduce任务设置InputFormat实现类
job.setOutputFormatClass(TextOutputFormat.class);//为map-reduce任务设置OutputFormat实现类 FileInputFormat.addInputPath(job, new Path(args[0]));//为map-reduce job设置输入路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));//为map-reduce job设置输出路径
job.waitForCompletion(true); //运行一个job,并等待其结束
} }
2 编译、打包 Hadoop MapReduce 程序
2.1 我们将 Hadoop 的 classhpath 信息添加到 CLASSPATH 变量中,在 /etc/profile 中增加 hadoop classpath的类包,source /etc/profile 生效
export CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH
2.2 切换到word目录,执行命令编译
javac -d classes src/*.java
- -classpath,设置源代码里使用的各种类库所在的路径,多个路径用
":"
隔开。 - -d,设置编译后的 class 文件保存的路径。
- src/*.java,待编译的源文件。
备注:如果没有配置hadoop classpath路径,执行方式 javac -classpath 依赖hadoop包.jar -d classes src/*.java
执行结果:在classes文件夹 创建 hadoop/mapr,这是类的包名,产生的类有
hadoop@ssmaster:~/java_program/word$ ls classes/hadoop/mapr/
WordCount.class WordCount$Map.class WordCount$Reduce.class
2.3 将类文件夹classes打包到word目录
jar -cvf WordCount.jar classes
hadoop@ssmaster:~/java_program/word$ ls
classes src WordCount.jar
3 执行
启动hadoop,准备/input,确保没有/output
执行命令,由于类中有包名,这里要加上
hadoop jar WordCount.jar hadoop.mapr.WordCount /input /output
会启动成功。 但是我的这里有什么异常,导致Hadoop集群退出 [遗留:运维重大问题]
总结:
hadoop mapreduce,hdfs的开发环境基本了解差不多
后续:
重点学习hdfs,mapreduce的任务编程
参考:
[b0013] Hadoop 版hello word mapreduce wordcount 运行(三)的更多相关文章
- [b0012] Hadoop 版hello word mapreduce wordcount 运行(二)
目的: 学习Hadoop mapreduce 开发环境eclipse windows下的搭建 环境: Winows 7 64 eclipse 直接连接hadoop运行的环境已经搭建好,结果输出到ecl ...
- [b0004] Hadoop 版hello word mapreduce wordcount 运行
目的: 初步感受一下hadoop mapreduce 环境: hadoop 2.6.4 1 准备输入文件 paper.txt 内容一般为英文文章,随便弄点什么进去 hadoop@ssmaster:~$ ...
- Hadoop版Helloworld之wordcount运行示例
1.编写一个统计单词数量的java程序,并命名为wordcount.java,代码如下: import java.io.IOException; import java.util.StringToke ...
- Hadoop集群WordCount运行详解(转)
原文链接:Hadoop集群(第6期)_WordCount运行详解 1.MapReduce理论简介 1.1 MapReduce编程模型 MapReduce采用"分而治之"的思想,把对 ...
- hadoop 2.7.3本地环境运行官方wordcount
hadoop 2.7.3本地环境运行官方wordcount 基本环境: 系统:win7 虚机环境:virtualBox 虚机:centos 7 hadoop版本:2.7.3 本次先以独立模式(本地模式 ...
- Hadoop学习历程(四、运行一个真正的MapReduce程序)
上次的程序只是操作文件系统,本次运行一个真正的MapReduce程序. 运行的是官方提供的例子程序wordcount,这个例子类似其他程序的hello world. 1. 首先确认启动的正常:运行 s ...
- (三)配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序
配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序 一. 需求部分 在ubuntu上用Eclipse IDE进行hadoop相关的开发,需要在Eclip ...
- hadoop笔记之MapReduce的运行流程
MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask ...
- Hadoop(六)MapReduce的入门与运行原理
一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用 ...
随机推荐
- Houdini设置
关闭网络编辑器动画 Animate network changes 平移时保持视口枢轴 Maintain Viewport Pivot when Panning 通知帮助提示将出现在Houdini的状 ...
- 4. static修饰符
一.static修饰符概述 1. static修饰的成员表明它属于这个类本身,而不属于该类的单个实例 把static修饰的成员变量和方法称为类变量.类方法 2. 不使用static修饰的成员则属于该类 ...
- ScratchJr是什么,有什么作用
什么是ScratchJr? ScratchJr是一个入门级的编程语言,可以让5到7岁的小朋友去创建他们的互动故事和游戏.孩子们使用图形化的程序积木让角色移动.跳跃.舞蹈.唱歌.孩子们可以利用绘图编辑器 ...
- 6.1 Spark SQL
一.从shark到Spark SQL Hive能够把SQL程序转换成map-reduce程序 可以把Hadoop中的Hive看作是一个接口,主要起到了转换的功能,并没有实际存储数据. Shark即 ...
- 6.GC垃圾回收算法和垃圾收集器的关系
JAVAGC垃圾回收机制和常见垃圾回收算法 推荐博客:JVM垃圾回收机制和常见垃圾回收算法 JVM的内存结构.垃圾回收算法
- 【转】gdb的调试与使用
转载自:https://www.jianshu.com/p/7a06b0bda2d8 gdb的调试与使用 这篇应该是我见过的总结最详细的gdb调试指南了,这位博主是个很强的人,他的博客对萌新比较友好, ...
- idea插件(mybatis框架下mapper接口快速跳转对应xml文件)亲测好用!
我相信目前在绝大部分公司里,主要使用的框架是S(spring)S(spring MVC)M(mybatis),其中mybatis总体架构是编写mapper接口,框架扫描其对应的mapper.xml文件 ...
- c# 第40节 密封类、密封方法
本节内容: 1:密封的存在意义 2:密封方法的实现 1:密封的存在意义 2:密封方法的实现 class2::父类 class Class2 { public virtual void show() { ...
- CF1252J Tiling Terrace
CF1252J Tiling Terrace 洛谷评测传送门 题目描述 Talia has just bought an abandoned house in the outskirt of Jaka ...
- Pencil 基于Electron的GUI原型工具之菜单再探
为什么要重试呢? 主要是觉得Pencil这个工具还是比较有价值.就像Linus对Linux下分发版的态度"让用户有选择"一样,在现在这个Sass服务.Web服务化越来越普遍越便利的 ...