tensorflow中卷积、转置卷积具体实现方式
卷积和转置卷积,都涉及到padding, 那么添加padding 的具体方式,就会影响到计算结果,所以搞清除tensorflow中卷积和转置卷积的具体实现有助于模型的灵活部署应用。
一、卷积
举例说明:
X: 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
w: 1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 4
如对于:tf.nn.conv2(X,w,stride=[1,1],padding='SAME')
需要在X 中添加3 行 3列, 那么在tensorflow 中的添加方式如下:
left_w = 3/2 up_h =3/2
right_w = 3-left_w down_h = 3- up_h
也即: 添加padding 时如左右、上下不能呢个平均分配,则左边<=右边,上边<=下边
故,卷积后的 (0,0)位置的值为, 1*2 + 2*1+ 3*1+ 6*1+7*3+8*1+11*1+12*1+14*4
二 、转置卷积
X: 1 2 3 4 5 w: 1 1 1 1
6 7 8 9 10 1 2 1 1
11 12 13 14 15 1 2 3 1
16 17 18 19 20
21 22 23 24 25
tf.nn.conv2d_transpose(X,W,tf.stack([10,10]),strides=[2,2],padding="SAME")
1、对X扩展,
strides=[2,2] 故扩展后的 X 为:(shape:10X10)
1 0 2 0 3 0 4 0 5 0
0 0 0 0 0 0 0 0 0 0
6 0 7 0 8 0 9 0 10 0
. . . . . . . . . .
. . . . . . . . . .
2、加padding,由于padding = "SAME" 所以需要加 3行 3列
对X 扩展再加padding 后的 高和宽为:
H = X.H * stride + (w.H-1)
W = X.W*stride + (w.W-1)
l_h = ceil(((w.H - 1)*1.0 + (stride - 1)) / 2.0); // 向上取整数
l_h = l_h>(w.H - 1) ? (w.H - 1) : l_h; // 在左边添加padding 的列数
up_w = ceil(((w.W - 1)*1.0 + (stride - 1)) / 2.0) // 向上取整数
up_w = up_w>(w.W - 1) ? (w.W - 1) : up_h; // 在上边添加padding 的行数
说明:
input.shape: 5X5 ; stride = 3 ; w.shape =5*5 padding = "SAME" 时
扩展后,input.shape = 15*15 , 其中 最右边扩展2列, 最下边扩展2行
加padding后, input.shape = 19*19, 其中在最左边扩展3列, 最上边扩展3行; 最右边再扩展1列,最下边再扩展1行
卷积(步长为1)后 , output .shape = 15*15
3、卷积
tensorflow 中conv2d_transpose对卷积的实现有别于conv2, 相当于将 w 进行reverse 后进行卷积。
tensorflow中卷积、转置卷积具体实现方式的更多相关文章
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- TensorFlow中tf.ConfigProto()配置Sesion运算方式
博主个人网站:https://chenzhen.online tf.configProto用于在创建Session的时候配置Session的运算方式,即使用GPU运算或CPU运算: 1. tf.Con ...
- TensorFlow中CNN的两种padding方式“SAME”和“VALID”
来源 dilation_rate为一个可选的参数,默认为1,这里我们可以先不管它. 整理一下,对于"VALID",输出的形状计算如下: new_height=new_width=⌈ ...
- 由浅入深:CNN中卷积层与转置卷积层的关系
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...
- tensorflow 卷积/反卷积-池化/反池化操作详解
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_bac ...
- TensorFlow中设置学习率的方式
目录 1. 指数衰减 2. 分段常数衰减 3. 自然指数衰减 4. 多项式衰减 5. 倒数衰减 6. 余弦衰减 6.1 标准余弦衰减 6.2 重启余弦衰减 6.3 线性余弦噪声 6.4 噪声余弦衰减 ...
- TensorFlow中实现RNN,彻底弄懂time_step
这篇博客不是一篇讲解原理的博客,这篇博客主要讲解tnesorlfow的RNN代码结构,通过代码来学习RNN,以及讲解time_steps,如果这篇博客没有让你明白time_steps,欢迎博客下面评论 ...
- Tensorflow中卷积的padding方式
根据tensorflow中的Conv2D函数,先定义几个基本符号: 输入矩阵W*W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样 filter矩阵F*F,卷积核 stride值S,步长 输出 ...
随机推荐
- 将数据库中数据导出为excel表格
public class Excel { private static Logger logger = LoggerFactory.getLogger(Excel.class); /** * 导出项目 ...
- CCF-CSP题解 201612-4 压缩编码
\(CSP\)也考\(DP\)的嘛...想了两小时贪心的我在宿舍凌乱... 还是智障+老花啊...这不是一道区间合并裸题嘛...石子合并啊... 再看看这\(3s\)的时限,\(O(n^3)\)都够了 ...
- 深度理解return具体用法
''' 下面我们来更加深度的理解return具体用法!!! return 默认返回None return 可以返回任意数据类型的数据 return 返回多个值的时候,会以元祖的形式把多个值包在一起 ' ...
- 记Linux下一次乱码事件
近来需要对着教程敲代码,但是之前在Windows上的压缩包在Linux解压后发生了乱码,主要是文件内乱码,文件名还是正常的.搜索“Linux rar解压乱码“试了一圈也没解决.不过到是发现了winra ...
- 如何下载Vimeo视频
MediaHuman YouTube Downloader是应用在Mac上的一款非常优秀的YouTube视频下载工具,YouTube Downloader破解版将帮助你快速完成视频下载,而不会挂断.您 ...
- 记录一次Windows简单构建Dockerfile
参考文档[https://www.cnblogs.com/GraceSkyer/p/9908984.html] 1]环境说明 操作系统 :win10 ,docker软件:Docker for Win ...
- 如何利用PS将照片背景替换为白色
需求:将照片中的蓝底换成白底: 操作步骤: 1.打开图片,点击背景图层: 2.利用套索,选中除背景外的区域: 3.右键,反选: 4.填充为“白色”,确定,保存:
- composer入门 一些简单常用的命令介绍
composer是什么 composer是PHP的插件依赖管理工具,我个人感觉和java的Maven.Gradle很类似. Windows OS下安装composer 参考: https://www. ...
- linux 定时备份数据库
说明 检查Crontab是否安装 若没有 需要先安装Crontab定时工具 安装定时工具参考(https://www.cnblogs.com/shaohuixia/p/5577738.html) 需要 ...
- 蒟蒻的PKUWC2019划水记(更新ing)
前言 (结束再补) \(Dec\ 20th\) 正式出发 今天,是正式出发的日子. 虽说是星期五,可并没有去学校晨跑.难得睡到了\(7\)点,起来匆匆吃完了早饭(一个手抓饼),就出发去火车站了. 到了 ...