poj 3233 矩阵快速幂
地址 http://poj.org/problem?id=3233
大意是n维数组 最多k次方 结果模m的相加和是多少
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
题解
矩阵逐步的相乘然后相加是不可以 但是矩阵也有类似快速幂的做法
/*
A + A^2 =A(I+A)
A + A^2 + A^3 + A^4 = (A + A^2)(I + A^2)
记做sum(n) = A +A^2 +A^3 +...+A^n
如果n是偶数 sum(n) = sum(n/2)(I+A^(n/2))
如果n是奇数 sum(n) = sum(n-1) + A^n
= sum((n-1)/2)(I+A^((n-1)/2)) + A^n
*/
代码如下
#include <iostream>
#include <cstring> using namespace std; struct matrix {
int data[][];
}; int n = ;
int m = ;
int k = ; //矩阵乘法
matrix mul(matrix a, matrix b)
{
matrix c;
memset(c.data, , sizeof(c.data));
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
for (int k = ; k <= n; k++) {
c.data[i][j] = (c.data[i][j] + 1ll * a.data[i][k] * b.data[k][j]) % m;
}
}
} return c;
} //矩阵加法
matrix add(matrix a, matrix b) {
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
a.data[i][j] = (a.data[i][j] + b.data[i][j])%m;
}
}
return a;
} //矩阵快速幂
matrix quickpow(matrix a, int k) {
matrix c;
memset(c.data, , sizeof(c.data));
for (int i = ; i <= n; i++)
c.data[i][i] = ;
while (k) {
if (k & ) c = mul(c, a);
k >>= ;
a = mul(a, a);
}
return c;
} //正式计算 sum k
matrix sum(matrix a, int k) {
if (k == ) return a;
matrix c;
memset(c.data, , sizeof(c.data));
for (int i = ; i <= n; i++)
c.data[i][i] = ;
c = add(c, quickpow(a, k >> ));
c = mul(c, sum(a, k >> ));
if (k & ) c = add(c, quickpow(a, k));
return c;
} /*
A + A^2 =A(I+A) A + A^2 + A^3 + A^4 = (A + A^2)(I + A^2)
记做sum(n) = A +A^2 +A^3 +...+A^n
如果n是偶数 sum(n) = sum(n/2)(I+A^(n/2))
如果n是奇数 sum(n) = sum(n-1) + A^n
= sum((n-1)/2)(I+A^((n-1)/2)) + A^n
*/ int main()
{
matrix mat;
cin >> n;
cin >> k;
cin >> m; for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
cin >> mat.data[i][j];
}
} matrix ret = sum(mat, k); for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
cout << ret.data[i][j] << " ";
}
cout << endl;
}
}
poj 3233 矩阵快速幂的更多相关文章
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
- Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板
题目链接 请猛戳~ Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 ...
- poj 3233 矩阵快速幂+YY
题意:给你矩阵A,求S=A+A^1+A^2+...+A^n sol:直接把每一项解出来显然是不行的,也没必要. 我们可以YY一个矩阵: 其中1表示单位矩阵 然后容易得到: 可以看出这个分块矩阵的左下角 ...
- poj 3734 矩阵快速幂+YY
题目原意:N个方块排成一列,每个方块可涂成红.蓝.绿.黄.问红方块和绿方块都是偶数的方案的个数. sol:找规律列递推式+矩阵快速幂 设已经染完了i个方块将要染第i+1个方块. a[i]=1-i方块中 ...
- POJ 3070 矩阵快速幂解决fib问题
矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...
- 解题报告:poj 3070 - 矩阵快速幂简单应用
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...
- POJ 3070 矩阵快速幂
题意:求菲波那切数列的第n项. 分析:矩阵快速幂. 右边的矩阵为a0 ,a1,,, 然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列. #include <c ...
- poj 3744 矩阵快速幂+概率dp
题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...
- poj 3233(矩阵高速幂)
题目链接:http://poj.org/problem?id=3233. 题意:给出一个公式求这个式子模m的解: 分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点.本题k的值非常大.所以要用 ...
随机推荐
- How to: Map a Persistent Class to a Database View Which Has No Key Field如何:映射持久化类到无主键数据库视图
With XAF, you can build new applications from scratch or maintain existing databases. The How to: Ge ...
- 25.Zabbix入门必备
==Zabbix入门必备== 1.配置zabbix源 [root@zabbix ~]# cat /etc/yum.repos.d/zabbix.repo [zabbix] name=Zabbix Of ...
- Docker容器镜像打成tar包
简述需求: 在现在容器上保存镜像进行打包,在另一台服务上使用 首先查看下现有要打tar包的容器 docker ps -a 接下来用commit参数进行保存镜像, -a 提交人的姓名 -m “提交内容 ...
- zabbix获取一周内各个等级告警的次数
# encoding:UTF-8 import xlsxwriter import datetime import pymysql import numpy as np import pandas _ ...
- git上传本地项目到github或者gitlib(两个是一样的)。
第一步:在github上面创建一个repository 点击create就好了.然后会出现下面的页面. 第三步:打开你所在文件夹,或者是新建的文件夹(用来做仓库的)右键会出现下面 选用git B ...
- 误区以为父组件render一次,子组件会重新初始化
初学react的时候我有一个误区,以为父组件render的一次,会将子组件先卸载,再将子组件重新初始化,事实证明不是. 这是对react生命周期函数不太清楚. 父子组件都初始化后,父组件再render ...
- 手机投屏工具与HOSTS切换工具
ApowerMirror windows -->switchhosts
- ej3-0开端
开始 编码多年,总有一些最佳实践,Java也是,比如设计模式,比如Effective Java 3 (ej3) . 设计模式先后看过<大话设计模式>,<HeadFirst 设计模式& ...
- react+ant-mobile+lib-flexible构建移动端项目适应设计图尺寸(750)
使用lib-flexible在react中先安装 npm install lib-flexible --save 因为插件使用的是rem适配,所以安装两个插件 npm install postcss- ...
- vue 客户端渲染和服务端渲染
参考链接 https://www.cnblogs.com/tiedaweishao/p/6644267.html