地址 http://poj.org/problem?id=3233

大意是n维数组 最多k次方  结果模m的相加和是多少

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

题解

矩阵逐步的相乘然后相加是不可以 但是矩阵也有类似快速幂的做法

/*
A + A^2 =A(I+A)

A + A^2 + A^3 + A^4 = (A + A^2)(I + A^2)
记做sum(n) = A +A^2 +A^3 +...+A^n
如果n是偶数 sum(n) = sum(n/2)(I+A^(n/2))
如果n是奇数 sum(n) = sum(n-1) + A^n
= sum((n-1)/2)(I+A^((n-1)/2)) + A^n
*/

代码如下

 #include <iostream>
#include <cstring> using namespace std; struct matrix {
int data[][];
}; int n = ;
int m = ;
int k = ; //矩阵乘法
matrix mul(matrix a, matrix b)
{
matrix c;
memset(c.data, , sizeof(c.data));
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
for (int k = ; k <= n; k++) {
c.data[i][j] = (c.data[i][j] + 1ll * a.data[i][k] * b.data[k][j]) % m;
}
}
} return c;
} //矩阵加法
matrix add(matrix a, matrix b) {
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
a.data[i][j] = (a.data[i][j] + b.data[i][j])%m;
}
}
return a;
} //矩阵快速幂
matrix quickpow(matrix a, int k) {
matrix c;
memset(c.data, , sizeof(c.data));
for (int i = ; i <= n; i++)
c.data[i][i] = ;
while (k) {
if (k & ) c = mul(c, a);
k >>= ;
a = mul(a, a);
}
return c;
} //正式计算 sum k
matrix sum(matrix a, int k) {
if (k == ) return a;
matrix c;
memset(c.data, , sizeof(c.data));
for (int i = ; i <= n; i++)
c.data[i][i] = ;
c = add(c, quickpow(a, k >> ));
c = mul(c, sum(a, k >> ));
if (k & ) c = add(c, quickpow(a, k));
return c;
} /*
A + A^2 =A(I+A) A + A^2 + A^3 + A^4 = (A + A^2)(I + A^2)
记做sum(n) = A +A^2 +A^3 +...+A^n
如果n是偶数 sum(n) = sum(n/2)(I+A^(n/2))
如果n是奇数 sum(n) = sum(n-1) + A^n
= sum((n-1)/2)(I+A^((n-1)/2)) + A^n
*/ int main()
{
matrix mat;
cin >> n;
cin >> k;
cin >> m; for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
cin >> mat.data[i][j];
}
} matrix ret = sum(mat, k); for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
cout << ret.data[i][j] << " ";
}
cout << endl;
}
}

poj 3233 矩阵快速幂的更多相关文章

  1. POJ 3233 矩阵快速幂&二分

    题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...

  2. Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板

    题目链接  请猛戳~ Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 ...

  3. poj 3233 矩阵快速幂+YY

    题意:给你矩阵A,求S=A+A^1+A^2+...+A^n sol:直接把每一项解出来显然是不行的,也没必要. 我们可以YY一个矩阵: 其中1表示单位矩阵 然后容易得到: 可以看出这个分块矩阵的左下角 ...

  4. poj 3734 矩阵快速幂+YY

    题目原意:N个方块排成一列,每个方块可涂成红.蓝.绿.黄.问红方块和绿方块都是偶数的方案的个数. sol:找规律列递推式+矩阵快速幂 设已经染完了i个方块将要染第i+1个方块. a[i]=1-i方块中 ...

  5. POJ 3070 矩阵快速幂解决fib问题

    矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...

  6. 解题报告:poj 3070 - 矩阵快速幂简单应用

    2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...

  7. POJ 3070 矩阵快速幂

    题意:求菲波那切数列的第n项. 分析:矩阵快速幂. 右边的矩阵为a0 ,a1,,, 然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列. #include <c ...

  8. poj 3744 矩阵快速幂+概率dp

    题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...

  9. poj 3233(矩阵高速幂)

    题目链接:http://poj.org/problem?id=3233. 题意:给出一个公式求这个式子模m的解: 分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点.本题k的值非常大.所以要用 ...

随机推荐

  1. NSwag.AspNetCore常用功能介绍

    对于asp.net core 下的Swagger,之前一直用Swashbuckle的,因为官方推荐,再加上有老张的博客助力<从壹开始前后端分离[ .NET Core2.0/3.0 +Vue2.0 ...

  2. (转)利用Auto ARIMA构建高性能时间序列模型(附Python和R代码)

    转自:  原文标题:Build High Performance Time Series Models using Auto ARIMA in Python and R 作者:AISHWARYA SI ...

  3. [MySQL] mysql中bitmap的简单运用

    bitmap就是在一个二进制的数据中,每一个位代表一定的含义,这样最终只需要存一个整型数据,就可以解释出多个含义.业务中有一个字段专门用来存储用户对某些功能的开启和关闭,如果是传统的思维,肯定是建一个 ...

  4. 011.MongoDB性能监控

    一 MongoDB 监控 1.1 监控概述 MongoDB自带了mongostat 和 mongotop 这两个命令来监控MongoDB的运行情况.这两个命令用于处理MongoDB数据库变慢等等问题非 ...

  5. Could not open requirements file: [Errno 2] No such file or directory: 'requirements.txt

    最近安装python,已经安装好,cmd终端中输入python.pip等命令都有用 然而在配置requirements.txt文件过程中,执行语句 “pip install -r requiremen ...

  6. java基础 - 泛型的使用

    泛型的使用方式有泛型类,泛型接口,泛型方法. 泛型的意思是把参数类型也当成参数传入,也就是在使用时(类实例化或调用方法时)传入类型. 泛型类 在实例化时传入参数类型,不能对泛型类使用instancec ...

  7. P3747 [六省联考2017]相逢是问候

    题意 如果对一个数操作\(k\)次,那么这个数会变成\(c^{c^{...^{a_i}}}\),其中\(c\)有\(k\)个. 根据P4139 上帝与集合的正确用法这道题,我们可以知道一个数不断变为自 ...

  8. [译]Vulkan教程(09)窗口表面

    [译]Vulkan教程(09)窗口表面 Since Vulkan is a platform agnostic API, it can not interface directly with the ...

  9. 【STM32-V7】STM32H743XIH6开发板,丰富软件资源,强劲硬件配置,大量软件解决方案持续更新中(2019-12-12)

    说明: 争取做更多的实战性应用,分享更多的嵌入式技术,希望能在实际项目中帮到大家. (1)V7将大力加强对初学者的支持力度,已经更新至63章,下载链接,后37章和一批视频教程将加紧制作. (2)事隔五 ...

  10. Vue小练习 03

    """ 1.有以下广告数据(实际数据命名可以略做调整) ad_data = { tv: [ {img: 'img/tv/tv1.jpg', title: 'tv1'}, ...