系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI
点击star加星不要吝啬,星越多笔者越努力。

第5章 多入单出的单层神经网络

5.0 多变量线性回归问题

5.0.1 提出问题

问题:在北京通州,距离通州区中心15公里的一套93平米的房子,大概是多少钱?

房价预测问题,成为了机器学习的一个入门话题,著名的波士顿的房价数据及相关的比赛已经很多了,但是美国的房子都是独栋的,前院后院停车库游泳池等等参数非常多,初学者可能理解起来有困难。我们不妨用简化版的北京通州的房价来举例,感受一下房价预测的过程。

影响北京通州房价的因素有很多,居住面积、地理位置、朝向、学区房、周边设施、建筑年份等等,其中,面积和地理位置是两个比较重要的因素。地理位置信息一般采用经纬度方式表示,但是经纬度是两个特征值,联合起来才有意义,因此,我们把它转换成了到通州区中心的距离。

我们有1000个样本,每个样本有两个特征值,一个标签值,示例如表5-1。

表5-1 样本数据

样本序号 地理位置 居住面积 价格(万元)
1 10.06 60 302.86
2 15.47 74 393.04
3 18.66 46 270.67
4 5.20 77 450.59
... ... ... ...
  • 特征值1 - 地理位置,统计得到:

    • 最大值:21.96公里
    • 最小值:2.02公里
    • 平均值:12.13公里
  • 特征值2 - 房屋面积,统计得到:
    • 最大值:119平米
    • 最小值:40平米
    • 平均值:78.9平米
  • 标签值 - 房价,单位为百万元:
    • 最大值:674.37
    • 最小值:181.38
    • 平均值:420.64

这个数据是三维的,所以可以用两个特征值作为x和y,用标签值作为z,在xyz坐标中展示如表5-2。

表5-2 样本在三维空间的可视化

正向 侧向

从正向看,很像一块草坪,似乎是一个平面。再从侧向看,和第4章中的直线拟合数据很像。所以,对于这种三维的线性拟合,我们可以把它想象成为拟合一个平面,这个平面会位于这块“草坪”的中位,把“草坪”分割成上下两块更薄的“草坪”,最终使得所有样本点到这个平面的距离的平方和最小。

5.0.2 多元线性回归模型

由于表中可能没有恰好符合15公里、93平米条件的数据,因此我们需要根据1000个样本值来建立一个模型,来解决预测问题。

通过图示,我们基本可以确定这个问题是个线性回归问题,而且是典型的多元线性回归,即包括两个或两个以上自变量的回归。多元线性回归的函数模型如下:

\[y=a_0+a_1x_1+a_2x_2+\dots+a_kx_k\]

具体化到房价预测问题,上面的公式可以简化成:

\[
z = x_1 \cdot w_1 + x_2 \cdot w_2 + b
\]

抛开本例的房价问题,对于一般的应用问题,建立多元线性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:

  1. 自变量对因变量必须有显著的影响,并呈密切的线性相关;
  2. 自变量与因变量之间的线性相关必须是真实的,而不是形式上的;
  3. 自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;
  4. 自变量应具有完整的统计数据,其预测值容易确定。

5.0.3 解决方案

如果用传统的数学方法解决这个问题,我们可以使用正规方程,从而可以得到数学解析解,然后再使用神经网络方式来求得近似解,从而比较两者的精度,再进一步调试神经网络的参数,达到学习的目的。

我们不妨先把两种方式在这里做一个对比,读者阅读并运行代码,得到结果后,再回到这里来仔细体会表5-3中的比较项。

表5-3 两种方法的比较

方法 正规方程 梯度下降
原理 几次矩阵运算 多次迭代
特殊要求 \(X^TX\)的逆矩阵存在 需要确定学习率
复杂度 \(O(n^3)\) \(O(n^2)\)
适用样本数 \(m \lt 10000\) \(m \ge 10000\)

[ch05-00] 多变量线性回归问题的更多相关文章

  1. deep learning 练习 多变量线性回归

    多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/Document ...

  2. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  3. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. python实现多变量线性回归(Linear Regression with Multiple Variables)

    本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...

  5. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  6. Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  7. Andrew Ng机器学习第五章——多变量线性回归

    一.多变量线性回归的技巧之一——特征缩放 1.为什么要使用特征缩放? 特征缩放用来确保特征值在相似的范围之内. 设想这样一种情况(房价预测),两个特征值分别是房子的大小和卧室的数量.每个特征值所处的范 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归

    Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...

  9. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  10. 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).

随机推荐

  1. 游戏辅助外gua篇:如何Dump内存获得游戏的辅助

    转载请标明出处: https://dujinyang.blog.csdn.net/article/category/9267855 本文出自:[奥特曼超人的博客] 本篇邀请了 "阿七&quo ...

  2. Asp.Net终于可以在龙芯服务器上运行啦:Jexus成功完成对国产系列CPU的适配

    为了确保我国信息化建设“安全可靠”,使用国产关键系统.关键应用.关键软硬件替代国外信息技术产品,已经在党政部门.国营企事业单位得到了进一步落实.过去运行于 Windows 服务器的 Web 应用程序, ...

  3. 爬虫学习--Day4(网页采集器的实现)

    #UA: User-Agent {请求载体的身份标识}#(反爬机制)UA检测:门户网站的服务器回检测对应请求的载体身份标识,如果检测到请求的载体身份为某一款浏览器就说明该请求时一个正常的请求.但是,如 ...

  4. NOIP模拟30B 活该

    T1:没有判-1 T2:推出柿子之后手摸错了!,只交了一个表 T3....... 完戏!,就是活该!

  5. [转载]2.7 UiPath Flowchart的介绍和使用

    一.Flowchart的介绍 用于更复杂的业务逻辑. 与序列不同的是, 流程图提供了多个分支逻辑运算符, 可以使用流程图创建复杂的业务流程并以多种方式连接每个活动. 二.在UiPath 使用Flowc ...

  6. python多线程总结

    概述 进程与线程 进程:进程是资源(CPU.内存等)分配的最小单位,进程有独立的地址空间与系统资源,一个进程可以包含一个或多个线程 线程:线程是CPU调度的最小单位,是进程的一个执行流,线程依赖于进程 ...

  7. 因为 GitHub Actions 我发现了 Jake Wharton 的一个仓库

    本文微信公众号「AndroidTraveler」首发. 背景 昨天(2019-11-14)上去 GitHub 上面一看,结果来了个下面的提示: 点进去一看: 看来是自动化构建相关的. 那就试一下,选了 ...

  8. day2-day3基本数据类型专区

    一.基本数据类型 1.字符串 str (用''or“”表示) 字符串中每个组成部分为字符,python中只要是用引号引起来的都叫字符串 ---特征: 加法 n1 = "alex" ...

  9. 020.掌握Pod-Pod基础使用

    一 Pod定义详解 1.1 完整Pod定义文件 apiVersion: v1 #必选,版本号,例如v1,版本号必须可以用 kubectl api-versions 查询到 kind: Pod #必选, ...

  10. gitbook的插件配置

    原生的gitbook样式比较单一,美观度和功能欠佳,可通过相关插件进行拓展. 插件地址:https://plugins.gitbook.com/ 主目录下新建book.json: { "au ...