系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI
点击star加星不要吝啬,星越多笔者越努力。

第5章 多入单出的单层神经网络

5.0 多变量线性回归问题

5.0.1 提出问题

问题:在北京通州,距离通州区中心15公里的一套93平米的房子,大概是多少钱?

房价预测问题,成为了机器学习的一个入门话题,著名的波士顿的房价数据及相关的比赛已经很多了,但是美国的房子都是独栋的,前院后院停车库游泳池等等参数非常多,初学者可能理解起来有困难。我们不妨用简化版的北京通州的房价来举例,感受一下房价预测的过程。

影响北京通州房价的因素有很多,居住面积、地理位置、朝向、学区房、周边设施、建筑年份等等,其中,面积和地理位置是两个比较重要的因素。地理位置信息一般采用经纬度方式表示,但是经纬度是两个特征值,联合起来才有意义,因此,我们把它转换成了到通州区中心的距离。

我们有1000个样本,每个样本有两个特征值,一个标签值,示例如表5-1。

表5-1 样本数据

样本序号 地理位置 居住面积 价格(万元)
1 10.06 60 302.86
2 15.47 74 393.04
3 18.66 46 270.67
4 5.20 77 450.59
... ... ... ...
  • 特征值1 - 地理位置,统计得到:

    • 最大值:21.96公里
    • 最小值:2.02公里
    • 平均值:12.13公里
  • 特征值2 - 房屋面积,统计得到:
    • 最大值:119平米
    • 最小值:40平米
    • 平均值:78.9平米
  • 标签值 - 房价,单位为百万元:
    • 最大值:674.37
    • 最小值:181.38
    • 平均值:420.64

这个数据是三维的,所以可以用两个特征值作为x和y,用标签值作为z,在xyz坐标中展示如表5-2。

表5-2 样本在三维空间的可视化

正向 侧向

从正向看,很像一块草坪,似乎是一个平面。再从侧向看,和第4章中的直线拟合数据很像。所以,对于这种三维的线性拟合,我们可以把它想象成为拟合一个平面,这个平面会位于这块“草坪”的中位,把“草坪”分割成上下两块更薄的“草坪”,最终使得所有样本点到这个平面的距离的平方和最小。

5.0.2 多元线性回归模型

由于表中可能没有恰好符合15公里、93平米条件的数据,因此我们需要根据1000个样本值来建立一个模型,来解决预测问题。

通过图示,我们基本可以确定这个问题是个线性回归问题,而且是典型的多元线性回归,即包括两个或两个以上自变量的回归。多元线性回归的函数模型如下:

\[y=a_0+a_1x_1+a_2x_2+\dots+a_kx_k\]

具体化到房价预测问题,上面的公式可以简化成:

\[
z = x_1 \cdot w_1 + x_2 \cdot w_2 + b
\]

抛开本例的房价问题,对于一般的应用问题,建立多元线性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:

  1. 自变量对因变量必须有显著的影响,并呈密切的线性相关;
  2. 自变量与因变量之间的线性相关必须是真实的,而不是形式上的;
  3. 自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;
  4. 自变量应具有完整的统计数据,其预测值容易确定。

5.0.3 解决方案

如果用传统的数学方法解决这个问题,我们可以使用正规方程,从而可以得到数学解析解,然后再使用神经网络方式来求得近似解,从而比较两者的精度,再进一步调试神经网络的参数,达到学习的目的。

我们不妨先把两种方式在这里做一个对比,读者阅读并运行代码,得到结果后,再回到这里来仔细体会表5-3中的比较项。

表5-3 两种方法的比较

方法 正规方程 梯度下降
原理 几次矩阵运算 多次迭代
特殊要求 \(X^TX\)的逆矩阵存在 需要确定学习率
复杂度 \(O(n^3)\) \(O(n^2)\)
适用样本数 \(m \lt 10000\) \(m \ge 10000\)

[ch05-00] 多变量线性回归问题的更多相关文章

  1. deep learning 练习 多变量线性回归

    多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/Document ...

  2. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  3. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. python实现多变量线性回归(Linear Regression with Multiple Variables)

    本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...

  5. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  6. Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  7. Andrew Ng机器学习第五章——多变量线性回归

    一.多变量线性回归的技巧之一——特征缩放 1.为什么要使用特征缩放? 特征缩放用来确保特征值在相似的范围之内. 设想这样一种情况(房价预测),两个特征值分别是房子的大小和卧室的数量.每个特征值所处的范 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归

    Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...

  9. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  10. 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).

随机推荐

  1. lucas定理(模板题题解)

    题目很简单,很暴力,就是组合数,没有其他的. 但是直接暴力会炸wow 我们可以利用Lucas定理来分解字问题. Lucas定理:C(n,m)(mod p)=C(n%p,m%p)*C(n/p,m/p)( ...

  2. 『题解』Codeforces656E Out of Controls

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given a complete undirected gr ...

  3. jade 学习笔记 - gulp 自动编译

    实时监控   jade -P -w .\test1.jade sublime 分栏,可以看到实时修改情况     1. 元素写法 doctype html <!--[if IE8]>< ...

  4. 在VMware CentOS7挂载系统光盘搭建本地仓库

    1.软件准备: 安装VMware环境,在这里我使用的是VMware15 一个虚拟机系统,在这里我使用的是CentOS7(版本不同可能会有一点出入,但是应该相差不大) 在这里还有一个前提是已经建立好了y ...

  5. X-Admin&ABP框架开发-RBAC

    在业务系统需求规划过程中,通常对于诸如组织机构.用户和角色等这种基础功能,通常是将这部分功能规划到通用子域中,这也说明了,对于这部分功能来讲,是系统的基石,整个业务体系是建立于这部分基石之上的,当然, ...

  6. 【algo&ds】0.数据结构和算法入门

    解决问题方法的效率,跟数据的组织方式有关 解决问题方法的效率,跟空间的利用效率有关 解决问题方法的效率,跟算法的巧妙程度有关 什么是数据结构 数据对象在计算机中的组织方式 逻辑结构 物理存储结构 数据 ...

  7. 自学python的高效学习方法【python秘籍】

    随着互联网的发展,数据科学概念的普及,Python火得一塌糊涂,为此很多小伙伴想学这门语言,苦于没有正确的学习方法,大部分都放弃了,所以我想总结下经验来帮助大家高效学完python技术!第一.首先学习 ...

  8. 小白学 Python 爬虫(2):前置准备(一)基本类库的安装

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 本篇内容较长,各位同学可以先收藏后再看~~ 在开始讲爬虫之前,还是先把环境搞搞好,工欲善其事必先利其器嘛~~~ 本篇 ...

  9. 某些机root也不能访问dma-buf

    从4.3后,回顾<从surfaceflinger历史变更谈截屏>,只能通过生产消费者队列向surfaceflinger服务申请显示缓冲,这个缓冲就是dma-buf映射的共享内存. bind ...

  10. Alibaba Nacos 学习(四):Nacos Docker

    Alibaba Nacos 学习(一):Nacos介绍与安装 Alibaba Nacos 学习(二):Spring Cloud Nacos Config Alibaba Nacos 学习(三):Spr ...