基于opencv -python--银行卡识别
import cv2 def sort_contours(cnts, method="left-to-right"):
reverse = False
i = 0 if method == "right-to-left" or method == "bottom-to-top":
reverse = True if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingBoxes
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
import cv2
import numpy as np
import myutils
from imutils import contours
def cv_show(str,thing):
cv2.imshow(str, thing)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 指定信用卡类型
FIRST_NUMBER = {
"": "American Express",
"": "Visa",
"": "MasterCard",
"": "Discover Card"
}
img=cv2.imread("D:\images\ocr_a_reference.png")
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#二值化
ref=cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1]
cv_show("img_ref",ref)
# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓
ref_,refCnts,hierarchy=cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,0,255),3)
cv_show('img',img)
print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0]#排序,从左到右,从上到下
digits = {}
for (i, c) in enumerate(refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) = cv2.boundingRect(c)
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88)) # 每一个数字对应每一个模板
digits[i] = roi
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) #读取输入图像,预处理
image = cv2.imread("D:\images\credit_card_01.png")
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray) #礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
ksize=-1) gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8") print (np.array(gradX).shape)
cv_show('gradX',gradX)
#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)
#再来一个闭操作 thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh) # 计算轮廓 thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE) cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
cv_show('img',cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h) # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5 and ar < 4.0: if (w > 40 and w < 55) and (h > 10 and h < 20):
#符合的留下来
locs.append((x, y, w, h)) # 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = [] # 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = [] # 根据坐标提取每一个组
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show('group',group)
# 预处理
group = cv2.threshold(group, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('group',group)
# 计算每一组的轮廓
group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,
method="left-to-right")[0] # 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show('roi',roi) # 计算匹配得分
scores = [] # 在模板中计算每一个得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score) # 得到最合适的数字
groupOutput.append(str(np.argmax(scores))) # 画出来
cv2.rectangle(image, (gX - 5, gY - 5),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2) # 得到结果
output.extend(groupOutput) # 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)

下面样图适用


基于opencv -python--银行卡识别的更多相关文章
- 基于 OpenCV 的人脸识别
基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...
- 【计算机视觉】基于OpenCV的人脸识别
一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从 ...
- java基于OpenCV的人脸识别
基于Java简单的人脸和人眼识别程序 使用这个程序之前必须先安装配置OpenCV详细教程见:https://www.cnblogs.com/prodigal-son/p/12768948.html 注 ...
- 基于opencv+python的二维码识别
花了2天时间终于把二维码识别做出来了,不过效果一般,后面会应用在ROS辅助定位上,废话少说先上图: 具体过程参考了这位大神的博客:http://blog.csdn.net/qq_25491201/ar ...
- python基于OpenCV的人脸识别系统
想获得所有的代码,请下载(来自我的CSDN): https://download.csdn.net/download/qq_40875849/11292912 主函数: from recognitio ...
- 使用Python基于OpenCV的验证码识别
Blog:https://blog.csdn.net/qq_40962368/article/details/89312429(Verification_Code_Identification) 步骤 ...
- 基于opencv的车牌识别系统
前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述 OpenCV的全称是:Open Source Computer Vision ...
- OpenCV+python 人脸识别
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...
- 基于OpenCV的人脸识别[iOS开发笔记(2)]
开始了OpenCV的试水工作了... 1.Get ready 在OpenCV中我们会使用函数cv::CascadeClassifier 来进行人脸检测.但是在使用本函数之前我们需要添加一个XML文件对 ...
- 基于opencv的人脸识别程序
1. 解析opencv自带人脸识别源码(……/opencv-3.1.0/samples/cpp/facedetect.cpp) @ 操作系统:Ubuntu 15.04 OpenCV版本:3.1.0 # ...
随机推荐
- JS--- part6课程介绍 & part5复习
part6 课程介绍 scroll系列:-----重点,每个属性是什么意思 封装scroll系列的相关的属性,固定导航栏案例---事件浏览器的滚动条事件--能够写出来 封装动画函数---缓动动画--- ...
- Linux 使用grep过滤多个条件及grep常用过滤命令
这篇文章主要介绍了Linux 使用grep筛选多个条件及grep常用过滤命令,需要的朋友可以参考下 cat log.txt | grep 条件: cat log.txt | grep 条件一 | gr ...
- .NET Core 3.0 Preview 6中对ASP.NET Core和Blazor的更新
我们都知道在6月12日的时候微软发布了.NET Core 3.0的第6个预览版.针对.NET Core 3.0的发布我们国内的微软MVP-汪宇杰还发布的官翻版的博文进行了详细的介绍.具体的可以关注&q ...
- MSG结构
MSG是Windows程序中的结构体,用于保存windows消息,定义: typedef struct tagMSG { HWND hwnd; //该消息所属的窗口句柄 UINT message; / ...
- Create a Report at Runtime 在运行时创建报表
In this lesson, you will learn how to create reports at runtime. A report showing a list of Tasks wi ...
- CAD制图初学入门如何学好CAD?CAD大神总结5点诀窍,必须收藏
现在有很多的小伙伴们都加入到了CAD这个大家庭中,一开始都是都是一脸懵的状态,更不知要从何入手! 小编才开始也是,但是只要掌握好CAD的技巧和脊髓,一切都不是事.CAD大神总结5点诀窍,悄悄告诉你,必 ...
- jQuery随笔记录
DOM遍历 parent()方法返回所选元素的直接父元素.(parent() 只能遍历单个级别的 DOM树) parents()方法获取所选元素的所有祖先 children()所选元素 ...
- 使用动态SQL处理table_name作为输入参数的存储过程(MySQL)
关于mysql如何创建和使用存储过程,参考笔记<MySQL存储过程和函数创建>以及官网:https://dev.mysql.com/doc/refman/5.7/en/create-pro ...
- C#后台架构师成长之路-基础体系篇章大纲
如下基础知识点,如果不熟透,以后容易弄笑话..... 1. 常用数据类型:整型:int .浮点型:double.布尔型:bool.... 2. 变量命名规范.赋值基础语法.数据类型的转换.运算符和选择 ...
- 使用C#面向对象实现简易计算器(简单工厂模式)
操作流程: 1. 新建Operation类 2. 新建OperationAdd类,并继承Operation类 3. 新建OperationSub类,并继承Operation类 4. 新建Operati ...