基于opencv -python--银行卡识别
import cv2 def sort_contours(cnts, method="left-to-right"):
reverse = False
i = 0 if method == "right-to-left" or method == "bottom-to-top":
reverse = True if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingBoxes
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
import cv2
import numpy as np
import myutils
from imutils import contours
def cv_show(str,thing):
cv2.imshow(str, thing)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 指定信用卡类型
FIRST_NUMBER = {
"": "American Express",
"": "Visa",
"": "MasterCard",
"": "Discover Card"
}
img=cv2.imread("D:\images\ocr_a_reference.png")
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#二值化
ref=cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1]
cv_show("img_ref",ref)
# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓
ref_,refCnts,hierarchy=cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,0,255),3)
cv_show('img',img)
print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0]#排序,从左到右,从上到下
digits = {}
for (i, c) in enumerate(refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) = cv2.boundingRect(c)
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88)) # 每一个数字对应每一个模板
digits[i] = roi
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) #读取输入图像,预处理
image = cv2.imread("D:\images\credit_card_01.png")
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray) #礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
ksize=-1) gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8") print (np.array(gradX).shape)
cv_show('gradX',gradX)
#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)
#再来一个闭操作 thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh) # 计算轮廓 thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE) cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
cv_show('img',cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h) # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5 and ar < 4.0: if (w > 40 and w < 55) and (h > 10 and h < 20):
#符合的留下来
locs.append((x, y, w, h)) # 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = [] # 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = [] # 根据坐标提取每一个组
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show('group',group)
# 预处理
group = cv2.threshold(group, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('group',group)
# 计算每一组的轮廓
group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,
method="left-to-right")[0] # 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show('roi',roi) # 计算匹配得分
scores = [] # 在模板中计算每一个得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score) # 得到最合适的数字
groupOutput.append(str(np.argmax(scores))) # 画出来
cv2.rectangle(image, (gX - 5, gY - 5),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2) # 得到结果
output.extend(groupOutput) # 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
下面样图适用
基于opencv -python--银行卡识别的更多相关文章
- 基于 OpenCV 的人脸识别
基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...
- 【计算机视觉】基于OpenCV的人脸识别
一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从 ...
- java基于OpenCV的人脸识别
基于Java简单的人脸和人眼识别程序 使用这个程序之前必须先安装配置OpenCV详细教程见:https://www.cnblogs.com/prodigal-son/p/12768948.html 注 ...
- 基于opencv+python的二维码识别
花了2天时间终于把二维码识别做出来了,不过效果一般,后面会应用在ROS辅助定位上,废话少说先上图: 具体过程参考了这位大神的博客:http://blog.csdn.net/qq_25491201/ar ...
- python基于OpenCV的人脸识别系统
想获得所有的代码,请下载(来自我的CSDN): https://download.csdn.net/download/qq_40875849/11292912 主函数: from recognitio ...
- 使用Python基于OpenCV的验证码识别
Blog:https://blog.csdn.net/qq_40962368/article/details/89312429(Verification_Code_Identification) 步骤 ...
- 基于opencv的车牌识别系统
前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述 OpenCV的全称是:Open Source Computer Vision ...
- OpenCV+python 人脸识别
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...
- 基于OpenCV的人脸识别[iOS开发笔记(2)]
开始了OpenCV的试水工作了... 1.Get ready 在OpenCV中我们会使用函数cv::CascadeClassifier 来进行人脸检测.但是在使用本函数之前我们需要添加一个XML文件对 ...
- 基于opencv的人脸识别程序
1. 解析opencv自带人脸识别源码(……/opencv-3.1.0/samples/cpp/facedetect.cpp) @ 操作系统:Ubuntu 15.04 OpenCV版本:3.1.0 # ...
随机推荐
- ORA-07217 environment variable cannot be evaluated
问题描述:还是rman的问题,一个很沙雕的问题,改了半天,准备是要做数据库的全备,和归档的备份 1.连接rman进行备份,这里要保持数据库为mount状态,因为要对数据库全备 [oracle@orcl ...
- 使用shell脚本删除30天以前的文件
#!/bin/bashlocation=/root/rmfind $location -mtime +30 -print | xargs rm -rf //-mtime是距离上一次修改时间 -prin ...
- 【转】CAP 定理的含义
原文链接:CAP 定理的含义 作者: 阮一峰 日期: 2018年7月16日 分布式系统(distributed system)正变得越来越重要,大型网站几乎都是分布式的. 分布式系统的最大难点,就是各 ...
- 删除列表中重复元素以及求list中元素个数
Python 去除列表中重复的元素 来自比较容易记忆的是用内置的set l1 = ['b','c','d','b','c','a','a'] l2 = list(set(l1)) print l2 还 ...
- IT兄弟连 HTML5教程 CSS3属性特效 transition过渡
CSS3的transition允许css的属性值在一定的时间区间内平滑地过渡.这种效果可以在鼠标单击.获得焦点.被点击或对元素任何改变中触发,并圆滑地以动画效果改变CSS的属性值. transitio ...
- C++双指针滑动和利用Vector实现无重复字符的最长子串—力扣算法
题目: 力扣原题链接:https://leetcode-cn.com/problems/longest-substring-without-repeating-characters/ 给定一个字符串, ...
- ruby中的数组相关方法介绍
l = ["a","b","c","d","e","f",'g'] puts l ...
- MySQL去重保留最大的那条记录(取最新的记录)
以用户登录日志表为例,取用户最近登录的设备 1 SET NAMES utf8mb4; 2 ; 3 4 -- ---------------------------- 5 -- Table struct ...
- [WPF 自定义控件]自定义控件库系列文章
Kino.Toolkit.Wpf Kino.Toolkit.Wpf是一组简单实用的WPF控件与工具,用于介绍自定义控件的入门.相关博客地址如下: 开始一个自定义控件库项目 介绍开始一个自定义控件库项目 ...
- pandas 初识(五)
1. 如何实现把一个属性(列)拆分成多列,产生pivot,形成向量信息,计算相关性? 例: class_ timestamp count 0 10 2019-01-20 13:23:00 1 1 10 ...