基于opencv -python--银行卡识别
import cv2 def sort_contours(cnts, method="left-to-right"):
reverse = False
i = 0 if method == "right-to-left" or method == "bottom-to-top":
reverse = True if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingBoxes
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
import cv2
import numpy as np
import myutils
from imutils import contours
def cv_show(str,thing):
cv2.imshow(str, thing)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 指定信用卡类型
FIRST_NUMBER = {
"": "American Express",
"": "Visa",
"": "MasterCard",
"": "Discover Card"
}
img=cv2.imread("D:\images\ocr_a_reference.png")
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#二值化
ref=cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1]
cv_show("img_ref",ref)
# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓
ref_,refCnts,hierarchy=cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,0,255),3)
cv_show('img',img)
print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0]#排序,从左到右,从上到下
digits = {}
for (i, c) in enumerate(refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) = cv2.boundingRect(c)
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88)) # 每一个数字对应每一个模板
digits[i] = roi
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) #读取输入图像,预处理
image = cv2.imread("D:\images\credit_card_01.png")
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray) #礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
ksize=-1) gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8") print (np.array(gradX).shape)
cv_show('gradX',gradX)
#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)
#再来一个闭操作 thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh) # 计算轮廓 thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE) cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
cv_show('img',cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h) # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5 and ar < 4.0: if (w > 40 and w < 55) and (h > 10 and h < 20):
#符合的留下来
locs.append((x, y, w, h)) # 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = [] # 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = [] # 根据坐标提取每一个组
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show('group',group)
# 预处理
group = cv2.threshold(group, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('group',group)
# 计算每一组的轮廓
group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,
method="left-to-right")[0] # 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show('roi',roi) # 计算匹配得分
scores = [] # 在模板中计算每一个得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score) # 得到最合适的数字
groupOutput.append(str(np.argmax(scores))) # 画出来
cv2.rectangle(image, (gX - 5, gY - 5),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2) # 得到结果
output.extend(groupOutput) # 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
下面样图适用
基于opencv -python--银行卡识别的更多相关文章
- 基于 OpenCV 的人脸识别
基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...
- 【计算机视觉】基于OpenCV的人脸识别
一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从 ...
- java基于OpenCV的人脸识别
基于Java简单的人脸和人眼识别程序 使用这个程序之前必须先安装配置OpenCV详细教程见:https://www.cnblogs.com/prodigal-son/p/12768948.html 注 ...
- 基于opencv+python的二维码识别
花了2天时间终于把二维码识别做出来了,不过效果一般,后面会应用在ROS辅助定位上,废话少说先上图: 具体过程参考了这位大神的博客:http://blog.csdn.net/qq_25491201/ar ...
- python基于OpenCV的人脸识别系统
想获得所有的代码,请下载(来自我的CSDN): https://download.csdn.net/download/qq_40875849/11292912 主函数: from recognitio ...
- 使用Python基于OpenCV的验证码识别
Blog:https://blog.csdn.net/qq_40962368/article/details/89312429(Verification_Code_Identification) 步骤 ...
- 基于opencv的车牌识别系统
前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述 OpenCV的全称是:Open Source Computer Vision ...
- OpenCV+python 人脸识别
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...
- 基于OpenCV的人脸识别[iOS开发笔记(2)]
开始了OpenCV的试水工作了... 1.Get ready 在OpenCV中我们会使用函数cv::CascadeClassifier 来进行人脸检测.但是在使用本函数之前我们需要添加一个XML文件对 ...
- 基于opencv的人脸识别程序
1. 解析opencv自带人脸识别源码(……/opencv-3.1.0/samples/cpp/facedetect.cpp) @ 操作系统:Ubuntu 15.04 OpenCV版本:3.1.0 # ...
随机推荐
- IoT缺德相关
https://github.com/nebgnahz/awesome-iot-hacks <揭秘家用路由器0day漏洞挖掘技术> Embedded Device Security: Pw ...
- 相机位姿求解——P3P问题
1.位姿求解是计算机视觉中经常遇到的,Perspective-n-Points, PnP(P3P)提供了一种解决方案,它是一种由3D-2D的位姿求解方式,即需要已知匹配的3D点和图像2D点.目前遇到的 ...
- 用python爬虫简单爬取 笔趣网:类“起点网”的小说
首先:文章用到的解析库介绍 BeautifulSoup: Beautiful Soup提供一些简单的.python式的函数用来处理导航.搜索.修改分析树等功能. 它是一个工具箱,通过解析文档为用户提供 ...
- c博客06-2019-结构体&文件
1.本章学习总结 1.1 学习内容总结 结构体如何定义.成员如何赋值: 1.常见的定义: struct student { int num; char name[20]; }stu; //2.采用ty ...
- javascript中的slice()方法
JavaScript中的Array对象提供了一个slice()方法,用于从已有的数组中返回选定的元素. arrayObject.slice(start, end) 参数说明 start 必需(否则没有 ...
- 从零开始的vue学习笔记(六)
混入 混入 (mixin) 提供了一种非常灵活的方式,来分发 Vue 组件中的可复用功能.简单解释就是把一个Vue组件中的内容提供给别的组件来用.例子: // 定义一个混入对象 var myMixin ...
- asp.net 页面中添加普通视频的几种方式
第一种 是通过调用window media player进行播放诸如:wmv,asf等格式文件: <object align=center class="OBJECT" cl ...
- ES-入门
https://es.xiaoleilu.com/010_Intro/10_Installing_ES.html 1. 安装 https://www.elastic.co/cn/downloads/ ...
- 5.Ansible Jinja2 模板
1.jinja2渲染NginxProxy配置文件 jinja2 房屋建筑设计固定的 jinja2模板与Ansible关系 Ansible如何使用jinja2模板 template模块 拷贝文件? te ...
- 白话 MVC、MVP、MVVP
白话 MVC.MVP.MVVP 注意这里单纯的通过例子来讲解 MVC MVP MVVP 这三种架构模式的起源和作用,不牵扯某种特定的语言.具体到各种语言各种软件系统上体现有所不同,但是原理都是这样的. ...