ContentLoss

首先是要定义一个内容差异损失函数,这里直接调用functional.mse_loss(input,self.target)就可以计算出其内容差异损失。

注意这里一般是定义一个网络模型,输入和输出一直,这样才在后面方便直接求出 loss

class ContentLoss(nn.Module):

    def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach() def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input

detach是使他不能求梯度

StyleLoss

这里是定义风格差异损失函数,首先就先定一个一个gram函数来求 c*c c为层数

def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d) features = input.view(a * b, c * d) # resise F_XL into \hat F_XL G = torch.mm(features, features.t()) # compute the gram product # we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)

然后利用gram函数来求loss

class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach() def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input

新定义网络

然后将 ContentLoss和 StyleLoss 加入新定义的迁移网络(normalization见下面)

cnn = models.vgg19(pretrained=True).features.to(device).eval()

content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
cnn = copy.deepcopy(cnn) # normalization module
normalization = Normalization(normalization_mean, normalization_std).to(device) # just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = [] # assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
# model = nn.Sequential()
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here. #********注意**************不能掉 vgg默认inplace=ture
layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) model.add_module(name, layer) if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss) if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss) # now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break model = model[:(i + 1)] return model, style_losses, content_losses

normalization模型

cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) # create a module to normalize input image so we can easily put it in a
# nn.Sequential class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1) def forward(self, img):
# normalize img
return (img - self.mean) / self.std

输入参数定义

input_img = content_img.clone()
optimizer = optim.LBFGS([input_img.requires_grad_()])
两种方式
#input_param = nn.Parameter(input_img.data)
#optimizer = optim.LBFGS([input_param])

更新input_img

注意梯度共轭和LBFGS 方法更新梯度的时候 要用闭包的形式

def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img, input_img, num_steps=300,
style_weight=500000, content_weight=1):
"""Run the style transfer."""
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img, content_img)
# optimizer = get_input_optimizer(input_img) print('Optimizing..')
run = [0]
while run[0] <= num_steps: def closure():
# correct the values of updated input image
input_img.data.clamp_(0, 1) optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0 for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight loss = style_score + content_score
loss.backward() run[0] += 1
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print() return style_score + content_score
optimizer.step(closure) # a last correction...
input_img.data.clamp_(0, 1) return input_img

其余代码参考 https://pytorch.org/tutorials/advanced/neural_style_tutorial.html#sphx-glr-advanced-neural-style-tutorial-py

neural_transfer风格迁移的更多相关文章

  1. 图像风格迁移(Pytorch)

    图像风格迁移 最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效, Content Loss 根据输入图片和输出图片的像素差别可以比较损失 \(l_{content} = \fr ...

  2. keras图像风格迁移

    风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss) ...

  3. Gram格拉姆矩阵在风格迁移中的应用

    Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向 ...

  4. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  5. Keras实现风格迁移

    风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...

  6. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  7. Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!

    近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...

  8. ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)

    1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...

  9. [DeeplearningAI笔记]卷积神经网络4.6-4.10神经网络风格迁移

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Cont ...

随机推荐

  1. RDIFramework.NET框架基于Quartz.Net实现任务调度详解及效果展示

    在上一篇Quartz.Net实现作业定时调度详解,我们通过实例代码详细讲解与演示了基于Quartz.NET开发的详细方法.本篇我们主要讲述基于RDIFramework.NET框架整合Quartz.NE ...

  2. Linux磁盘与分区

    正在从新装载虚拟机,碰到磁盘分区一阵头大,花了一下午对分区的基本原理做了一个梳理   一.磁盘   硬盘内部结构:

  3. SSAS Tabular 表格模型建模(关系)及部署

    一.表格建模(SSAS 表格)   表格模型是 Analysis Services 中的内存中数据库. 使用最先进的压缩算法和多线程查询处理器,xVelocity 内存中分析引擎 (VertiPaq) ...

  4. 微信小程序生成随机数

    const charts = ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J','K', ...

  5. 洛谷P3275 [SCOI2011]糖果 题解

    题目链接: https://www.luogu.org/problemnew/show/P3275 分析: 本题就是一个裸的差分约束. 核心: x=1x=1x=1时,a=b,a−>b,b−> ...

  6. 运用KeyCode在浏览器中按WASD使图形运动

    如何实现在浏览器中按WASD四个键使图形上下左右运动呢? 其实很简单,用keyCode方法就可以实现了. 先放个div在html中: <div id="ball" style ...

  7. C#8.0 中使用默认接口成员更新接口

    连载目录    [已更新最新开发文章,点击查看详细] 从 .NET Core 3.0 上的 C# 8.0 开始,可以在声明接口成员时定义实现. 最常见的方案是安全地将成员添加到已经由无数客户端发布并使 ...

  8. python基础-python解释器多版本共存-变量-常量

    一.编程语言的发展史 机器语言-->汇编语言-->高级语言,学习难度及执行效率由高到低,开发效率由低到高 机器语言:二进制编程,0101 汇编语言:用英文字符来代替0101编程 高级语言: ...

  9. C#开发OPC Client程序

    前一段时间写了一个OPC Client程序,现在将简单介绍一下程序开发方法.测试环境最后将我写的程序开源到Github上去. 一.开发方法 我这里用的是一个OPC动态库OPCAutomation.dl ...

  10. linux初学者-系统启动故障篇

    linux初学者-系统启动故障篇 在系统的操作中,有时会不小心误删或者操作失误使得系统启动不起来,下文将列举几种常见的系统启动失败的情况及解决的办法. 1.删除或者覆盖mbr的446个字节 mbr的4 ...