autocad 二次开发 最小包围圆算法
主要实现了在模型空间下的得到一个包围所有图元的最小圆,该算法的思路是这样:
1.从点集中随机选出两个点作为直径对圆进行初始化。
2.判断下一个点p是否在圆中,如果在则继续本步骤,如果不在则进行步骤3。
3.使用p作为新圆的一个边界点,另一个边界点为距离p最远的圆上的点,使用这两个点作为直径构造新圆。
4.继续步骤2,直到遍历完所有点。
参考:https://blog.csdn.net/u010559586/article/details/90903896
实现出来的效果如图所示:
首先是获得所有的点,包括参照的点和普通实体的点,获取点之后得到的点集去重。如果是块参照要看它的Bounds属性是否有值,有值就取边界值,如果是普通实体就取Entity的Extends属性的边界点。还有如果是标注,就不计入点,因为标注的边界属性得出来的点不准确。我先得到BlockRecord的Bounds边界,然后继续把这个blockRecord遍历了一遍,得到实体。这样做,我是想把块参照也遍历进去,但是我不知道如何区分普通的实体所在的块和有名块,还有可能有匿名的块参照,我区分不了,,就重复遍历了,最后得到的点集去个重就行了。
代码:
public void GetAllPts()
{ using (var trans = Db.TransactionManager.StartTransaction())
{ BlockTable blkTbl = (BlockTable)trans.GetObject(Db.BlockTableId, OpenMode.ForRead); foreach (ObjectId oId in blkTbl)
{ var rec = trans.GetObject(oId, OpenMode.ForRead) as BlockTableRecord; if (rec != null)
{
//块参照
if (rec.Bounds.HasValue)
{
var ptMin = rec.Bounds.Value.MinPoint;
var ptMax = rec.Bounds.Value.MaxPoint;
var radius = (ptMax - ptMin).Length / 2.0;
listPts.Add(new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ));
listRadius.Add(radius);
}
//实体
foreach (ObjectId entId in rec)
{
var ent = trans.GetObject(entId, OpenMode.ForRead) as Entity; //在计算边界属性时,dimension的不准确,我就跳过了
if ((ent as Dimension) != null)
{
continue;
} if (ent != null)
{
var ptMin = ent.GeometricExtents.MinPoint;
var ptMax = ent.GeometricExtents.MaxPoint; var radius = (ptMax - ptMin).Length / 2.0; listPts.Add(new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ));
listRadius.Add(radius);
}
}
}
}
listPts = listPts.Distinct<Point3d>().ToList();
trans.Commit();
}
}
得到点集之后,就可以写算法了,这里,我先得到第一个圆,如果模型空间上只有一个图元,我就已这个图元的中心做圆心,边界对角线的一半作为半径 构成一个圆返回;如果是只有两个图元,我就以这两个图元的中心点做直径,直径的中点做圆心构成一个圆返回;如果是3个或者3个以上,我就以点集的第一个点,和点集的中间点构成一个圆返回。代码如下:
public Circle GetFirstCircle()
{
//如果只有一个图,就直接返回这个图元的边界圆
if (listPts.Count == )
{
Circle c = new Circle(listPts[], Vector3d.ZAxis, listRadius[]);
return c;
}
else if (listPts.Count == )
{
var ptMin = listPts[];
var ptMax = listPts[];
var radius = (ptMax - ptMin).Length / 2.0;
var ptCenter = new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ); Circle c = new Circle(ptCenter, Vector3d.ZAxis, radius); return c; }
else
{
var ptMin = listPts[];
var ptMax = listPts[listPts.Count / ];
var radius = (ptMax - ptMin).Length / 2.0;
var ptCenter = new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ); Circle c = new Circle(ptCenter, Vector3d.ZAxis, radius); listPts.Remove(ptMin);
listPts.Remove(ptMax); return c;
}
}
最后是第二步和第三步的算法:
Database Db = Application.DocumentManager.MdiActiveDocument.Database;
//所有的点集
List<Point3d> listPts = new List<Point3d>();
List<double> listRadius = new List<double>(); [CommandMethod("GetMinC")]
public void GetCircle()
{
listPts.Clear();
listRadius.Clear(); GetAllPts(); Circle minCircle = null;
if (listPts.Count >= )
{
Circle c= GetFirstCircle(); for (int i = ; i < listPts.Count; i++)
{
var pt = listPts[i]; var len = c.Radius; var cCen = c.Center; var len2 = (pt - cCen).Length; //如果pt在圆内,继续下一个点
if (len > len2)
{
continue;
}
else
{
//求圆心和pt点构成的直线和圆的交点,
//并求出pt点离圆最远的那个点pt1或者是Pt2,最后用这两个点构成一个新的圆,继续循环,直到所有的点遍历完
var line = new Line(pt, cCen); Point3dCollection pt3Coll = new Point3dCollection(); c.IntersectWith(line, Intersect.ExtendBoth, pt3Coll, IntPtr.Zero, IntPtr.Zero); var pt1 = pt3Coll[];
var pt2 = pt3Coll[]; var l1 = (pt1 - pt).Length;
var l2 = (pt2 - pt).Length; if (l1 > l2)
{
var center = new Point3d((pt1.X + pt.X) / , (pt1.Y + pt.Y) / , ); c = new Circle(center, Vector3d.ZAxis, l1/);
}
else
{
var center = new Point3d((pt2.X + pt.X) / , (pt2.Y + pt.Y) / , ); c = new Circle(center, Vector3d.ZAxis, l2 / );
}
}
}
minCircle = c;
}
else
{
minCircle = GetFirstCircle();
}
if (minCircle != null)
//加入模型空间
minCircle.ToSpace();
minCircle.Dispose();
}
autocad 二次开发 最小包围圆算法的更多相关文章
- AutoCAD二次开发——AutoCAD.NET API开发环境搭建
AutoCAD二次开发工具:1986年AutoLisp,1989年ADS,1990年DCL,1993年ADS-RX,1995年ObjectARX,1996年Active X Automation(CO ...
- matlab练习程序(Ritter‘s最小包围圆)
原始算法是sphere,我这里简化为circle了. Ritter's求最小包围圆为线性算法,因为非常简单,所以应用非常广泛. 该算法求出的圆比最优圆大概会大个5%到20%左右,求最优圆应该可以用Bo ...
- 1,下载和部署开发环境--AutoCAD二次开发
环境需求为: AutoCAD 2020版 ObjectARX SDK 下载地址:https://www.autodesk.com/developer-network/platform-technolo ...
- AutoCad 二次开发 .net 之层表的增加 删除 修改图层颜色 遍历 设置当前层
AutoCad 二次开发 .net 之层表的增加 删除 修改图层颜色 遍历 设置当前层 AutoCad 二次开发 .net 之层表的增加 删除 修改图层颜色 遍历 设置当前层我理解的图层的作用大概是把 ...
- AutoCad 二次开发 文字镜像
AutoCad 二次开发 文字镜像 参考:https://adndevblog.typepad.com/autocad/2013/10/mirroring-a-dbtext-entity.html 在 ...
- AutoCad 二次开发 jig操作之标注跟随线移动
AutoCad 二次开发 jig操作之标注跟随线移动 在autocad当中,我认为的jig操作的意思就是即时绘图的意思,它能够实时的显示出当前的操作,以便我们直观的感受到当前的绘图操作是什么样子会有什 ...
- AutoCAD二次开发-使用ObjectARX向导创建应用程序(HelloWorld例子)
AutoCAD2007+vs2005 首先自己去网上搜索下载AutoCAD2007的ARX开发包. 解压后如下 打开后如下 classmap文件夹为C++类和.net类的框架图,是一个DWG文件. d ...
- 我的AutoCAD二次开发之路 (一)
原帖地址 http://379910987.blog.163.com/blog/static/33523797201011184552167/ 今天在改代码的时候,遇到了AddVertexAt方法的用 ...
- Autocad中使用命令来调用python对Autocad二次开发打包后的exe程序
在Autocad中直接调用Python二次开发程序是有必要的,下面介绍一种方法来实现这个功能: 其基本思路是:先将二次开发的程序打包为可执行程序exe,然后编写lsp文件,该文件写入调用exe程序的语 ...
随机推荐
- 【PostMan】批量参数化的用法 之 text/csv
目的:批量参数化,单个循环多次使用不同的参数请求. 测试数据准备 新建txt文件,输入格式: 首行 --->参数名 其他行 --->测试数据(不同测试数据需要换行) 如下所示,Number ...
- H5之外部浏览器唤起微信分享
最近在做一个手机站,要求点击分享可以直接打开微信分享出去.而不是jiathis,share分享这种的点击出来二维码.在网上看了很多,都说APP能唤起微信,手机网页实现不了.也找了很多都不能直接唤起微信 ...
- 《算法导论中文版》PDF 下载
电子版仅供预览及学习交流使用,下载后请24小时内删除,支持正版,喜欢的请购买正版书籍 在有关算法的书中,有一些叙述非常严谨,但不够全面:另一些涉及了大量的题材,但又缺乏严谨性.本书将严谨性和全面性融为 ...
- 使用navicat操作PostPreSql创建表并设置主键自增和触发器
使用navicat操作PostPreSql创建表并设置主键自增和触发器 1).创建递增序列 2).创建表,使用序列,设置主键递增 3)定义触发函数 自动生成时间戳函数 CREATE OR REPLAC ...
- ReentreantLock:重入锁
ReentreantLock:重入锁 参考:https://www.cnblogs.com/nullzx/p/4968674.html 一). ReentrantLock与synchronized的区 ...
- 数据降维-PCA主成分分析
1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特 ...
- SpringBoot实现登录
1.使用Spring Initializer快速创建Spring Boot项目 1.1 IDEA:使用 Spring Initializer快速创建项目 IDE都支持使用Spring的项目创建向导快速 ...
- 使用Git上传文件到github
第一次利用git连接github时往往都不会勾选Initialize this repository with a README,这样的的确确是简单了,但是如果我们需要勾选,勾选了之后应该怎么办呢?1 ...
- AJAX与Django
AJAX 什么是AJAX? AJAX不是JavaScript的规范,它的缩写:Asynchronous JavaScript and XML,意思就是用JavaScript执行异步网络请求.提交任务之 ...
- 有趣的动态规划(golang版本)
多年前就听过这个动态规划,最近在复习常用算法的时候才认真学习了一下,发现蛮有意思,和大家安利一波. 定义: 准确来说,动态规划师吧一个复杂问题分解成若干个子问题,并且寻找最优子问题的一种思想,而不是一 ...