主要实现了在模型空间下的得到一个包围所有图元的最小圆,该算法的思路是这样:
1.从点集中随机选出两个点作为直径对圆进行初始化。
2.判断下一个点p是否在圆中,如果在则继续本步骤,如果不在则进行步骤3。
3.使用p作为新圆的一个边界点,另一个边界点为距离p最远的圆上的点,使用这两个点作为直径构造新圆。
4.继续步骤2,直到遍历完所有点。
参考:https://blog.csdn.net/u010559586/article/details/90903896
实现出来的效果如图所示:

首先是获得所有的点,包括参照的点和普通实体的点,获取点之后得到的点集去重。如果是块参照要看它的Bounds属性是否有值,有值就取边界值,如果是普通实体就取Entity的Extends属性的边界点。还有如果是标注,就不计入点,因为标注的边界属性得出来的点不准确。我先得到BlockRecord的Bounds边界,然后继续把这个blockRecord遍历了一遍,得到实体。这样做,我是想把块参照也遍历进去,但是我不知道如何区分普通的实体所在的块和有名块,还有可能有匿名的块参照,我区分不了,,就重复遍历了,最后得到的点集去个重就行了。
代码:

 public void GetAllPts()
{ using (var trans = Db.TransactionManager.StartTransaction())
{ BlockTable blkTbl = (BlockTable)trans.GetObject(Db.BlockTableId, OpenMode.ForRead); foreach (ObjectId oId in blkTbl)
{ var rec = trans.GetObject(oId, OpenMode.ForRead) as BlockTableRecord; if (rec != null)
{
//块参照
if (rec.Bounds.HasValue)
{
var ptMin = rec.Bounds.Value.MinPoint;
var ptMax = rec.Bounds.Value.MaxPoint;
var radius = (ptMax - ptMin).Length / 2.0;
listPts.Add(new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ));
listRadius.Add(radius);
}
//实体
foreach (ObjectId entId in rec)
{
var ent = trans.GetObject(entId, OpenMode.ForRead) as Entity; //在计算边界属性时,dimension的不准确,我就跳过了
if ((ent as Dimension) != null)
{
continue;
} if (ent != null)
{
var ptMin = ent.GeometricExtents.MinPoint;
var ptMax = ent.GeometricExtents.MaxPoint; var radius = (ptMax - ptMin).Length / 2.0; listPts.Add(new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ));
listRadius.Add(radius);
}
}
}
}
listPts = listPts.Distinct<Point3d>().ToList();
trans.Commit();
}
}

得到点集之后,就可以写算法了,这里,我先得到第一个圆,如果模型空间上只有一个图元,我就已这个图元的中心做圆心,边界对角线的一半作为半径 构成一个圆返回;如果是只有两个图元,我就以这两个图元的中心点做直径,直径的中点做圆心构成一个圆返回;如果是3个或者3个以上,我就以点集的第一个点,和点集的中间点构成一个圆返回。代码如下:

 public Circle GetFirstCircle()
{
//如果只有一个图,就直接返回这个图元的边界圆
if (listPts.Count == )
{
Circle c = new Circle(listPts[], Vector3d.ZAxis, listRadius[]);
return c;
}
else if (listPts.Count == )
{
var ptMin = listPts[];
var ptMax = listPts[];
var radius = (ptMax - ptMin).Length / 2.0;
var ptCenter = new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ); Circle c = new Circle(ptCenter, Vector3d.ZAxis, radius); return c; }
else
{
var ptMin = listPts[];
var ptMax = listPts[listPts.Count / ];
var radius = (ptMax - ptMin).Length / 2.0;
var ptCenter = new Point3d((ptMin.X + ptMax.X) / , (ptMin.Y + ptMax.Y) / , ); Circle c = new Circle(ptCenter, Vector3d.ZAxis, radius); listPts.Remove(ptMin);
listPts.Remove(ptMax); return c;
}
}

最后是第二步和第三步的算法:

  Database Db = Application.DocumentManager.MdiActiveDocument.Database;
//所有的点集
List<Point3d> listPts = new List<Point3d>();
List<double> listRadius = new List<double>(); [CommandMethod("GetMinC")]
public void GetCircle()
{
listPts.Clear();
listRadius.Clear(); GetAllPts(); Circle minCircle = null;
if (listPts.Count >= )
{
Circle c= GetFirstCircle(); for (int i = ; i < listPts.Count; i++)
{
var pt = listPts[i]; var len = c.Radius; var cCen = c.Center; var len2 = (pt - cCen).Length; //如果pt在圆内,继续下一个点
if (len > len2)
{
continue;
}
else
{
//求圆心和pt点构成的直线和圆的交点,
//并求出pt点离圆最远的那个点pt1或者是Pt2,最后用这两个点构成一个新的圆,继续循环,直到所有的点遍历完
var line = new Line(pt, cCen); Point3dCollection pt3Coll = new Point3dCollection(); c.IntersectWith(line, Intersect.ExtendBoth, pt3Coll, IntPtr.Zero, IntPtr.Zero); var pt1 = pt3Coll[];
var pt2 = pt3Coll[]; var l1 = (pt1 - pt).Length;
var l2 = (pt2 - pt).Length; if (l1 > l2)
{
var center = new Point3d((pt1.X + pt.X) / , (pt1.Y + pt.Y) / , ); c = new Circle(center, Vector3d.ZAxis, l1/);
}
else
{
var center = new Point3d((pt2.X + pt.X) / , (pt2.Y + pt.Y) / , ); c = new Circle(center, Vector3d.ZAxis, l2 / );
}
}
}
minCircle = c;
}
else
{
minCircle = GetFirstCircle();
}
if (minCircle != null)
//加入模型空间
minCircle.ToSpace();
minCircle.Dispose();
}

autocad 二次开发 最小包围圆算法的更多相关文章

  1. AutoCAD二次开发——AutoCAD.NET API开发环境搭建

    AutoCAD二次开发工具:1986年AutoLisp,1989年ADS,1990年DCL,1993年ADS-RX,1995年ObjectARX,1996年Active X Automation(CO ...

  2. matlab练习程序(Ritter‘s最小包围圆)

    原始算法是sphere,我这里简化为circle了. Ritter's求最小包围圆为线性算法,因为非常简单,所以应用非常广泛. 该算法求出的圆比最优圆大概会大个5%到20%左右,求最优圆应该可以用Bo ...

  3. 1,下载和部署开发环境--AutoCAD二次开发

    环境需求为: AutoCAD 2020版 ObjectARX SDK 下载地址:https://www.autodesk.com/developer-network/platform-technolo ...

  4. AutoCad 二次开发 .net 之层表的增加 删除 修改图层颜色 遍历 设置当前层

    AutoCad 二次开发 .net 之层表的增加 删除 修改图层颜色 遍历 设置当前层 AutoCad 二次开发 .net 之层表的增加 删除 修改图层颜色 遍历 设置当前层我理解的图层的作用大概是把 ...

  5. AutoCad 二次开发 文字镜像

    AutoCad 二次开发 文字镜像 参考:https://adndevblog.typepad.com/autocad/2013/10/mirroring-a-dbtext-entity.html 在 ...

  6. AutoCad 二次开发 jig操作之标注跟随线移动

    AutoCad 二次开发 jig操作之标注跟随线移动 在autocad当中,我认为的jig操作的意思就是即时绘图的意思,它能够实时的显示出当前的操作,以便我们直观的感受到当前的绘图操作是什么样子会有什 ...

  7. AutoCAD二次开发-使用ObjectARX向导创建应用程序(HelloWorld例子)

    AutoCAD2007+vs2005 首先自己去网上搜索下载AutoCAD2007的ARX开发包. 解压后如下 打开后如下 classmap文件夹为C++类和.net类的框架图,是一个DWG文件. d ...

  8. 我的AutoCAD二次开发之路 (一)

    原帖地址 http://379910987.blog.163.com/blog/static/33523797201011184552167/ 今天在改代码的时候,遇到了AddVertexAt方法的用 ...

  9. Autocad中使用命令来调用python对Autocad二次开发打包后的exe程序

    在Autocad中直接调用Python二次开发程序是有必要的,下面介绍一种方法来实现这个功能: 其基本思路是:先将二次开发的程序打包为可执行程序exe,然后编写lsp文件,该文件写入调用exe程序的语 ...

随机推荐

  1. 【PostMan】批量参数化的用法 之 text/csv

    目的:批量参数化,单个循环多次使用不同的参数请求. 测试数据准备 新建txt文件,输入格式: 首行 --->参数名 其他行 --->测试数据(不同测试数据需要换行) 如下所示,Number ...

  2. H5之外部浏览器唤起微信分享

    最近在做一个手机站,要求点击分享可以直接打开微信分享出去.而不是jiathis,share分享这种的点击出来二维码.在网上看了很多,都说APP能唤起微信,手机网页实现不了.也找了很多都不能直接唤起微信 ...

  3. 《算法导论中文版》PDF 下载

    电子版仅供预览及学习交流使用,下载后请24小时内删除,支持正版,喜欢的请购买正版书籍 在有关算法的书中,有一些叙述非常严谨,但不够全面:另一些涉及了大量的题材,但又缺乏严谨性.本书将严谨性和全面性融为 ...

  4. 使用navicat操作PostPreSql创建表并设置主键自增和触发器

    使用navicat操作PostPreSql创建表并设置主键自增和触发器 1).创建递增序列 2).创建表,使用序列,设置主键递增 3)定义触发函数 自动生成时间戳函数 CREATE OR REPLAC ...

  5. ReentreantLock:重入锁

    ReentreantLock:重入锁 参考:https://www.cnblogs.com/nullzx/p/4968674.html 一). ReentrantLock与synchronized的区 ...

  6. 数据降维-PCA主成分分析

    1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特 ...

  7. SpringBoot实现登录

    1.使用Spring Initializer快速创建Spring Boot项目 1.1 IDEA:使用 Spring Initializer快速创建项目 IDE都支持使用Spring的项目创建向导快速 ...

  8. 使用Git上传文件到github

    第一次利用git连接github时往往都不会勾选Initialize this repository with a README,这样的的确确是简单了,但是如果我们需要勾选,勾选了之后应该怎么办呢?1 ...

  9. AJAX与Django

    AJAX 什么是AJAX? AJAX不是JavaScript的规范,它的缩写:Asynchronous JavaScript and XML,意思就是用JavaScript执行异步网络请求.提交任务之 ...

  10. 有趣的动态规划(golang版本)

    多年前就听过这个动态规划,最近在复习常用算法的时候才认真学习了一下,发现蛮有意思,和大家安利一波. 定义: 准确来说,动态规划师吧一个复杂问题分解成若干个子问题,并且寻找最优子问题的一种思想,而不是一 ...