NOIP2014联合权值
无向连通图G有n个点,n-1条边。点从1到n依次编号,编号为i的点的权值为Wi ,每条边的长度均为1。图上两点(u, v)的距离定义为u点到v点的最短距离。对于图G上的点对(u, v),若它们的距离为2,则它们之间会产生Wu×Wv的联合权值。
请问图G上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
题目链接:codevs http://www.cnblogs.com/smileandyxu/p/5348411.html
图论问题,70分暴力都很好打吧,只要枚举所有点dfs找到他的距离为二的点,维护一个tot和一个max就可以了,细节自己想想,代码
等下会贴出来,正解是乘法的结合律,这个题目可以转换一下,对于每个点对,可以看成由一点中间点中转而成,就是每个点对中必定有
且只隔一个点吧,因为图是棵树,只要枚举每个入度为1的点作为中转点,然后将其儿子与其他所有儿子相乘就可以了,但这是n平方的啊!会超时。
所以我们用乘法原理,统计所有儿子权值和,然后用权值和剪去自己的权值的值再乘自己的权值,这样就是O(n)完成了。
另外,推荐我的博客:http://www.cnblogs.com/renjianshige/
暴力代码:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<queue>
#include<cstring>
const int MAXN=;
using namespace std;
struct edge{
int first;
int next;
int to;
int quan;
}a[*MAXN];
bool b[MAXN];
struct node{
int now;
int fa;
node(){}
node(int _now,int _fa):now(_now),fa(_fa){}
};
int dian[MAXN];
int in[MAXN];
int n,num=;
void addedge(int from,int to){
a[++num].to=to;
a[num].quan=;
a[num].next=a[from].first;
a[from].first=num;
}
long long tott=,big=;
void dfs(int now,int fa,int time){
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
if(to==fa) continue;
if(time==){
if(b[to]) continue;
long long dianquan=dian[fa]*dian[to];
big=max(big,dianquan);
tott=(tott+dianquan)%;
continue;
}
dfs(to,now,time+);
}
}
int main(){
memset(dian,,sizeof(dian));
memset(b,,sizeof(b));
scanf("%d",&n);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y);
addedge(y,x);
}
for(int i=;i<=n;i++){
scanf("%d",&dian[i]);
}
for(int i=;i<=n;i++){
dfs(i,,);
b[i]=;
}
printf("%lld %lld\n",big,(tott*)%);
return ;
}
AC代码:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<queue>
#include<cstring>
const int MAXN=;
using namespace std;
struct edge{
int first;
int next;
int to;
int quan;
}a[*MAXN];
bool b[MAXN];
int dian[MAXN];
int in[MAXN];
int n,num=;
void addedge(int from,int to){
a[++num].to=to;
a[num].quan=;
a[num].next=a[from].first;
a[from].first=num;
}
long long tott=,big=;
void dfs(int now){
long long tot=,big1=,big2=;
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
tot=(tot+dian[to])%;
if(dian[to]>big1)
{
big1=dian[to];
continue;
}
if(dian[to]<=big1&&dian[to]>big2) big2=dian[to];
}
for(int i=a[now].first;i;i=a[i].next){
tott+=dian[a[i].to]*(tot-dian[a[i].to])%;
if(tott<) tott+=;
tott=tott%;
}
if(big<big1*big2) big=big1*big2;
}
int main(){
memset(dian,,sizeof(dian));
memset(b,,sizeof(b));
scanf("%d",&n);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y);
addedge(y,x);
in[x]++;
in[y]++;
}
for(int i=;i<=n;i++){
scanf("%d",&dian[i]);
}
for(int i=;i<=n;i++){
if(in[i]==) continue;
dfs(i);
}
printf("%lld %lld\n",big,tott%);
return ;
}
NOIP2014联合权值的更多相关文章
- [Luogu 1351] NOIP2014 联合权值
[Luogu 1351] NOIP2014 联合权值 存图,对于每一个点 \(u\),遍历它的所有邻接点.以 \(u\) 为中转点的点对中,\((x,y)\) 的联合权值 \(w_x \cdot w_ ...
- NOIP2014 联合权值
2.联合权值 (link.cpp/c/pas) [问题描述] 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每条边的长度均为1.图上两点(u, v)的距离定义为u ...
- 【洛谷P1351】[NOIP2014]联合权值
联合权值 题目链接 首先,直接两重循环暴力枚举得了70分 然后发现第二重循环可以记忆化一下 记忆一下每个点的子节点的权值和.最大值. 次大值(为了处理该点的父节点权值恰好为最大值) 具体看代码 #in ...
- [NOIP2014]联合权值 题解
题目大意: 有一棵树,求距离为2的点权的乘积的和以及最大值. 思路: 枚举每一个点,则与其相邻的点互为距离为2的点.该部分的最大值为点权最大的两个点的积,和为点的权值和的平方减去每个点的平方,这样每条 ...
- luogu1351 [NOIp2014]联合权值 (dfs)
有两种情况:一个点到它的父亲的父亲(要算两次).一个点的子节点之间互相到达 #include<bits/stdc++.h> #define pa pair<int,int> # ...
- NOIP 2004 联合权值
洛谷 P1351 联合权值 洛谷传送门 JDOJ 2886: [NOIP2014]联合权值 D1 T2 JDOJ传送门 Description 无向连通图 G有 n个点,n-1条边.点从 1到 n依次 ...
- [NOIP2014] 提高组 洛谷P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- Noip2014 提高组 T2 联合权值 连通图+技巧
联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...
- NOIP2014提高组第二题联合权值
还是先看题吧: 试题描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 ...
随机推荐
- Linux入门基础之一
Linux 入门基础 一.Linux 系统安装 安装方法网上很多,请自行百度 二.Linux 基本操作 2.1.GNOME图形界面基本操作 操作类似于Windows系统操作 打开每一个文件夹都会打开一 ...
- 渗透之路基础 -- 服务端请求伪造SSRF
简介:SSRF 服务器端请求伪造,有的大型网站在web应用上提供了从其他服务器获取数据的功能.使用户指定的URL web应用获取图片,下载文件,读取文件内容.通常用于控制web进而探测内网服务以及攻击 ...
- Scratch Blocks本地环境搭建
关于Scratch Blocks环境的搭建,大家在实现的过程中还是有很多的问题,目前谷歌和MIT的工程师也在进一步完善.可以通过以下方式,简单快捷的导出Scratch Blocks对应的index.h ...
- java读取Excel —— XSSFWorkbook 找不到该类
- Anroid逆向学习从编写so到静动态调试分析arm的一次总结
Anroid逆向学习从编写so到静动态调试分析arm的一次总结 一.前言 最近跟着教我兄弟学逆向这篇教程学习Android逆向,在第七课后作业反复折腾了好几天,正好在折腾的时候对前面的学习总结一波,动 ...
- 手把手教你搭建Jenkins实现自动化部署Jar
centeros7 安装配置环境jdk1.8 1.先卸载centeros自带jdk rpm -qa | grep openjdk 查询出来的自带的openjdk 2.删除 rpm -e --nodep ...
- 微信小程序中scoll-view的一个小坑
在微信小程序开发中,有时候swiper-view会出现显示不全的问题,我们可以用scoll-view来把它包裹下,但是要用scoll-view就一定要设置height,而我们经常是在页面中加的这个组件 ...
- jquery的api以及用法总结-选择器
jQuery API及用法总结 选择器 基本选择器 * 通用选择器 .class 类选择器,一个元素可以有多个类(chrome使用原生js函数getElementByClassName()实现) 利用 ...
- Java假期样卷 简易通讯录
score.java package score; public class score { String name; String num; int age; boolean sex; double ...
- SpringBootSecurity学习(03)网页版登录添加自定义登录页面
自定义登录页面 前面无论是使用默认配置,还是自定义配置类,都是使用的springboot-security自带的登录页面,自带的登录页面在这个版本虽然设计的非常不错,但是在实际开发中,我们通常还是使用 ...