分手是祝愿:dp
Description
Zeit und Raum trennen dich und mich.
时空将你我分开。
B 君在玩一个游戏,这个游戏n个灯和n个开关组成,给定这n个灯的初始状态,下标为从1到n的正整数。
每个灯有两个状态亮和灭,我们用1来表示这个灯是亮的,用0表示这个灯是灭的,游戏的目标是使所有灯都灭掉。
但是当操作i个开关时,所有编号为i的约数(包括1和i)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮。
B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机操作一个开关,直到所有灯都灭掉。
这个策略需要的操作次数很多,B 君想到这样的一个优化。如果当前局面,可以通过操作小于等于k个开关使所有灯都灭掉
那么他将不再随机,直接选择操作次数最小的操作方法(这个策略显然小于等于k步)操作这些开关。
B 君想知道按照这个策略(也就是先随机操作,最后小于等于k步,使用操作次数最小的操作方法)的操作次数的期望。
这个期望可能很大,但是 B 君发现这个期望乘n的阶乘一定是整数,所以他只需要知道这个整数对100003取模之后的结果。
1<=n<=100000,0<=k<=n。对于50%的数据,k=n。
这题也是咕了好久啊,今天难得改题快,回来把它干了。
然而我颓题解了,想了几次了也没有想出来,呃。。。颓题解再怎么样也比干脆不做好一些
这题的主要难点在于如何确定状态定义,其它的其实还好。
看那个50%的部分分(数据水了,能拿80。。。)
也就是我们先考虑最优决策是什么。
首先,你操作编号小的开关,编号大的那个灯泡不会有反应。
所以对于编号最大的亮的那个灯,你想让它灭掉,只有两个方法。
一个是按掉它的开关,另一个是按掉比它更大的开关。
但是因为这已经是亮的里编号最大的了,那么如果你按一个编号更大的开关,那么亮的灯泡里编号上界就更大了。
这样的话迟早会涨到n左右,然后这时候我们只能关闭它自己。。。然后直到恢复初始状态。
所以你当然会直接按掉它自己。
这之后编号最大的亮灯编号变小了,继续同理解决问题即可。
这样我们就拿到了这个部分分。
但是直到这里,和我们的dp还是没有什么关系。
但是我们可以发现一些性质:
任意一个开关,都不能被其它的开关集合等价代替。
这样的话,给定我们一个初始状态,我们能像那个部分分一样求出它需要的开关集合。
这样的话,我们就可以断言,那些开关需要你动,那些开关你不能动。
而它是随机操作的,那么如果动了那些你不能动的开关。。。那么你还得再动一次让它回复原状
这就是异或操作,具有“操作偶数次等于没操作”和“交换操作顺序结果不变”的性质。
到了这里,我们开始构造dp数组的含义。
我们发现,现在开关到底是什么已经不重要了,开关只有两种:你需要动的,你不能动的
那么其实你只需要知道你还需要动几个开关就可以了
设$dp[i]$表示还有i个开关需要操作,想按对一个开关期望需要多少次操作。考虑转移:
你有$\frac{i}{n}$的概率按对,那么就是$\frac{i}{n}$
你有$\frac{n-i}{n}$的概率按错,这时候需要按的变成了$i+1$个,
于是先按$1$下到$i+1$步,再回来是$dp[i+1]$,而且你还要再按掉一个,是$dp[i]$。
于是$dp[i]=\frac{i}{n} + \frac{n-i}{n} \times (dp[i+1]+dp[i]+1)$
把$dp[i]$合并同类项,再化一下系数,得到$dp[i]=1+\frac{n-i}{i}\times (dp[i+1]+1)$
那么答案就是先把原有的cnt个按成k个,再把k个用最优决策判掉。
$ans=k+\sum\limits_{i=k+1}^{cnt} dp[i]$
当然如果cnt<=k的话答案就是cnt啊。
最后按照题意乘上$n!$即可。
#include<cstdio>
#define mod 100003
#define int long long
int dp[mod],st[mod],cnt,n,k,ans;
int qp(int b,int t,int a=){for(;t;t>>=,b=b*b%mod)if(t&)a=a*b%mod;return a;}
main(){
scanf("%lld%lld",&n,&k);
for(int i=;i<=n;++i)scanf("%lld",&st[i]);
for(int i=n;i;--i)if(st[i]){
cnt++;
for(int j=;j*j<=i;++j)if(i%j==){
st[j]^=;if(j*j!=i)st[i/j]^=;
}
}
if(cnt<=k){
for(int i=n;i;--i)cnt=cnt*i%mod;
printf("%lld\n",cnt);
return ;
}
dp[n]=;
for(int i=n-;i;--i)dp[i]=((n-i)*qp(i,mod-)%mod*(dp[i+]+)+)%mod;
for(int i=k+;i<=cnt;++i)ans=(ans+dp[i])%mod;ans+=k;
for(int i=n;i;--i)ans=ans*i%mod;
printf("%lld\n",ans);
}
好题,思路很不错。
其实这么顺下来貌似不是很难,但是为什么想不出来呢?
我和正解思路之间的距离。。。
还需要多练啊。
分手是祝愿:dp的更多相关文章
- bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]
4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...
- BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description ...
- 【BZOJ4872】分手是祝愿
分手是祝愿 [题目大意] 有n 个灯,每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被 ...
- 【BZOJ4872】分手是祝愿(动态规划,数学期望)
[BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...
- BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望
BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这 ...
- bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿
http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...
- 2017 [六省联考] T5 分手是祝愿
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 458 Solved: 299[Submit][Statu ...
- SHOI2017 分手是祝愿
分手是祝愿 有
随机推荐
- java架构之路-(分布式zookeeper)zookeeper真实使用场景
上几次博客,我说了一下Zookeeper的简单使用和API的使用,我们接下来看一下他的真实场景. 一.分布式集群管理✨✨✨ 我们现在有这样一个需求,请先抛开Zookeeper是集群还是单机的概念,下面 ...
- 整理一些大厂的开源平台及github,向他们看齐...
有人苦恼,该如何突破技术的局限性... 有人羡慕,技术上你怎么懂得这么多... 有人哀叹,唉,我已经学不动了... 我的总结(纯属个人想法):身处IT,就得不断学习和积累,才不会被狠狠地甩在身后.什么 ...
- Mac上Charles抓包iOS的https请求
介绍一款抓包工具,一般我在windows下使用Fiddler抓包,Fiddler使用教程这里就不讲了,重点介绍使用mac时的抓包工具----Charles. 进入官网 :Charles官网地址官网下载 ...
- Java中ArrayList和LinkedList的性能分析
ArrayList和LinkedList是Java集合框架中经常使用的类.如果你只知道从基本性能比较ArrayList和LinkedList,那么请仔细阅读这篇文章. ArrayList应该在需要更多 ...
- Python基础库之jieba库的使用(第三方中文词汇函数库)
各位学python的朋友,是否也曾遇到过这样的问题,举个例子如下: “I am proud of my motherland” 如果我们需要提取中间的单词要走如何做? 自然是调用string中的spl ...
- 最简单的ArcGIS Engine应用程序(上)
名词: IWorkspaceFactory 工作空间工厂 ShapeFileWorksapceFactory 矢量文件工作空间工厂 IWorkspce 工作空间 IFeatrueWorkspace 要 ...
- 微信小程序前端页面书写
微信小程序前端页面书写 WXML(WeiXin Markup Language)是框架设计的一套标签语言,结合基础组件.事件系统,可以构建出页面的结构. 一.数据绑定 1. 普通写法 <view ...
- 数据挖掘:python数据清洗cvs里面带中文字符
数据清洗,使用python数据清洗cvs里面带中文字符,意图是用字典对应中文字符,即key值是中文字符,value值是index,自增即可:利用字典数据结构没有重复key值的特性,把中文字符映射到了数 ...
- PHP yield代替range生成范围内的数
<?php function yieldRange($start, $limit, $step) { if ($start == $limit || $step == 0) { return $ ...
- 浅谈爬虫 《一》 ===python
浅谈爬虫 <一> ===python ‘’正文之前先啰嗦一下,准确来说,在下还只是一个刚入门IT世界的菜鸟,工作近两年了,之前做前端的时候就想写博客来着,现在都转做python了,如果还 ...