BZOJ2440完全平方数(莫比乌斯反演)
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9
, T ≤ 50
题解:
题目大意:求第k个无平方因子数是多少(无视原题干,1也是完全平方数那岂不是一个数也送不出去了?
无平方因子数(square-free number),即质因数分解之后所有质因数的次数都为1的数
首先二分答案 问题转化为求x以内有多少个无平方因子数
根据容斥原理可知 对于√x以内的所有质数 x以内的无平方因子数=无需是任何质数的倍数的数的数量(即x)-是至少一个质数平方倍数的数的数量+是至少两个质数平方倍数的数的数量-是至少三个质数平方倍数的数的数量...
我们回去考虑莫比乌斯函数,我们发现每一个质数乘积的符号与莫比乌斯函数的符号恰好吻合!
于是我们枚举每一个数,如果这个数是奇数个不同质数的乘积,那么mu为负,偶数个则mu为正,否则mu为零
故答案即Σx/(i*i)*mu[i]
/**************************************************************
Problem: 2440
User: SongHL
Language: C++
Result: Compile_Error
****************************************************************/ #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+;
ll Prime[maxn],mob[maxn],vis[maxn],cnt;
int T,K; void Mobius()
{
memset(Prime,,sizeof Prime);
memset(mob,,sizeof mob);
memset(vis,,sizeof vis);
mob[]=; cnt=;
for(ll i=;i<maxn;++i)
{
if(!vis[i]) Prime[cnt++]=i,mob[i]=-;
for(ll j=;j<cnt&&i*Prime[j]<maxn;++j)
{
vis[i*Prime[j]]=;
if(i%Prime[j]) mob[i*Prime[j]]=-mob[i];
else { mob[i*Prime[j]]=; break;}
}
}
} int work(int x)
{
int ans=;
for(int i=;i*i<=x;++i) ans+=x/(i*i) * mob[i];
return ans;
} int Judge()
{
int l=,r=K<<,mid;
while(l+<r)
{
mid=(l>>)+(r>>) +(l&r&);
if(work(mid)>=K) r=mid;
else l=mid;
}
if(work(l)>=K) return l;
return r;
} int main()
{
scanf("%d",&T);
Mobius();
while(T--) { scanf("%d",&K); printf("%d\n",Judge()); }
return ;
}
BZOJ2440完全平方数(莫比乌斯反演)的更多相关文章
- bzoj2440 完全平方数 莫比乌斯值+容斥+二分
莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...
- 【bzoj2440】[中山市选2011]完全平方数 莫比乌斯反演
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱.这天是小 ...
- HYSBZ 2440 完全平方数(莫比乌斯反演)
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 若i为质数,n为i*i的倍数,则称n为含平方因子数. 求1~n的无平方因子数. F(x) ...
- BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- 【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
[BZOJ2440]完全平方数(二分答案,莫比乌斯反演) 题面 BZOJ 题解 很显然,二分一个答案 考虑如何求小于等于这个数的非完全平方数倍数的个数 这个明显可以直接,莫比乌斯反演一下 然后这题就很 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- Bzoj2440 完全平方数
Time Limit: 10000MS Memory Limit: 131072KB 64bit IO Format: %lld & %llu Description 小 X 自幼就很 ...
- bzoj2440完全平方数
题目链接 上来先吐槽题面!!!!!! 你跟我说$1$不是完全平方数昂? 看了半天样例啊. 活生生的半天$……$ 莫比乌斯 反演 函数容斥一下,每次二分就好 反正本宝宝不知道反演是啥. 每次判断应 ...
随机推荐
- vue使用一些外部插件及样式的配置
一.配置全局css及js样式 1.首先将事先写好的css文件及js文件放在src文件目录下的assets文件下 2.在main.js文件输上图右边两个红色框的代码 二.配置全局jQuery及boots ...
- mysql去重查询表中数据
1.distinct select count(distinct CName) from teble select count(CName) from (select distinct CName f ...
- nyoj 412 Same binary weight ()
Same binary weight 时间限制:300 ms | 内存限制:65535 KB 难度:3 描述 The binary weight of a positive integer ...
- 磁盘配额管理disk quotas
条件: a.确保系统内核支持,Linux一般都支持 b.确保分区格式支持,ext2都只持! c.安装有quota软件,centos默认都有! (1)检查内核是否打开磁盘配额支持 [root@cento ...
- 剑指Offer-20.包含min函数的栈(C++/Java)
题目: 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 分析: 因为题目要求得到栈中最小元素的min函数时间复杂度为O(1),这里便不选择遍历栈 ...
- 使用OpenMP加快OpenCV图像处理性能 | speed up opencv image processing with openmp
本文首发于个人博客https://kezunlin.me/post/7a6ba82e/,欢迎阅读! speed up opencv image processing with openmp Serie ...
- windows 10 上源码编译boost 1.66.0 | compile boost 1.66.0 from source on windows 10
本文首发于个人博客https://kezunlin.me/post/854071ac/,欢迎阅读! compile boost 1.66.0 from source on windows 10 Ser ...
- MAC终端中tree命令
Mac没有自带的tree命令,需要额外安装才可以,操作方法有两种: 一.用find命令模拟tree效果 1.mac下默认是没有 tree命令的,不过我们可以使用find命令模拟出tree命令的效果,如 ...
- pdf 在线预览之 pdfobject插件
支持到ie9 可以不用安装 如果安装 npm i pdfobject 第一步:引入pdfObject包 申明一个变量 const { PDFObject } = require("../. ...
- Spring中常见的设计模式——单例模式
一.单例模式的应用场景 单例模式(singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例,并提供一个全局访问点.J2EE中的ServletContext,ServletCon ...