LsF is visiting a local amusement park with his friends, and a mirror room successfully attracts his attention. Inside the mirror room, there are n plane mirrors standing vertically on the ground. They are placed end-to-end and face-to-face so that if you overlook the room, you can find a convex hull and the all the reflector surfaces are inside the pattern. The height of the mirror is not important in this problem. 

Due to imperfect manufacturing techniques, mirrors can't reflect light without lose of energy. Each mirror has a reflection efficiency k, which means if the incident light's intensity is I, the reflected light's intensity will be reduced to kI. The only exception could happen when the light precisely goes to the two mirrors' junction. In that case, the light will be completely absorbed instantly. Note the laws of reflection of light applies in all other situations, that the angle of incidence equals the angle of reflection. 

Now LsF stands inside the mirror hall, and shoots a laser beam paralleled to the ground using his laser pointer. Unfortunately, his laser pointer can only shot laser beams with intensity of 1. What's worse, a laser beam is considered disappeared if its intensity is below 10−410−4. There's not much magnitude distance between the two numbers. 

LsF wants to know how many touches can his laser beam make with mirrors before it disappears.

Input

The first line contains an integer n(3≤n≤1000), indicating the number of mirrors; 

Then n lines follow. The ith line contains three real numbers xi,yi,ki(−109≤xi,yi≤109;0≤ki≤0.9)xi,yi,ki(−109≤xi,yi≤109;0≤ki≤0.9), which means the ith mirror's one end is at position (xi,yi)(xi,yi) and another end is at (xi+1xi+1mod n,yi+1yi+1mod n), and its reflectivity is kiki. 

Next there are two real numbers Vx,Vy(-109≤Vx,Vy≤109), indicating the initial direction vector of the laser beam. 

LsF is standing at the origin (0, 0).

Output

Output an integer in one line, the number of touches the laser beam could make before it disappears.

Sample Input

4
1 2 0.5
-1 0 0.5
1 -2 0.5
3 0 0.5
0 1
4
1 1 0.5
-1 1 0.5
-1 -1 0.5
1 -1 0.5
1 1

Sample Output

14
1

题解:因为0.1<=K<=0.9因此最多反射100,就一定可以消失。首先,我们判断该射线是否可以与镜面相交,如果与某一镜面相交,我们再判断是指向镜面还是反向指向镜面的,然后,我们可以计算出射线,与镜面的交点(用两个向量的投影相等)。然后更新O点与向量V;

#include<bits/stdc++.h>
using namespace std; struct Point{
double x,y,k;
} point[2010];
Point V;
Point vec(Point a,Point b)
{
return Point{a.x-b.x,a.y-b.y};
} double cha_ji(Point a,Point b) //判断是否相交
{
return a.x*b.y-a.y*b.x;
} Point jiao_point(Point O,Point V,Point a,Point b)//求交点
{
double dx=a.x-b.x;
double dy=a.y-b.y;
double t= ((O.x-a.x)*dy-(O.y-a.y)*dx)/(V.y*dx-V.x*dy);
return Point{O.x+t*V.x,O.y+V.y*t};
} double Nod(Point a,Point b)
{
return a.x*b.x+a.y*b.y;
} int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++) scanf("%lf%lf%lf",&point[i].x,&point[i].y,&point[i].k);
Point O{0,0};
scanf("%lf%lf",&V.x,&V.y);
double power=1;
int ans=0,flag=0;
while(power>=1e-4)
{
for(int i=0;i<n;i++)
{
if(cha_ji(V,vec(point[i],O))*cha_ji(V,vec(point[(i+1)%n],O))<0)
{
Point nod=jiao_point(O,V,point[i],point[(i+1)%n]);
if(Nod(V,vec(nod,O))<0) continue;
double dx=point[(i+1)%n].x-point[i].x;
double dy=point[(i+1)%n].y-point[i].y;
Point nex=(Point) {O.x-2*dx*(dx*O.x+dy*O.y-nod.x*dx-nod.y*dy)/(dx*dx+dy*dy),O.y-2*dy*(dx*O.x+dy*O.y-nod.x*dx-nod.y*dy)/(dx*dx+dy*dy)};
V=vec(nex,nod);
O=(Point){nod.x+0.1*V.x,nod.y+0.1*V.y};
ans++;
power*=point[i].k;
break;
}
else if(cha_ji(V,vec(point[i],O))*cha_ji(V,vec(point[(i+1)%n],O))==0)
{
ans++;flag=1;
break;
}
}
if(flag) break;
}
cout<<ans<<endl;
}
return 0;
}

(全国多校重现赛一)D Dying light的更多相关文章

  1. (全国多校重现赛一)F-Senior Pan

    Senior Pan fails in his discrete math exam again. So he asks Master ZKC to give him graph theory pro ...

  2. (全国多校重现赛一) J-Two strings

    Giving two strings and you should judge if they are matched.  The first string contains lowercase le ...

  3. (全国多校重现赛一) H Numbers

    zk has n numbers a1,a2,...,ana1,a2,...,an. For each (i,j) satisfying 1≤i<j≤n, zk generates a new ...

  4. (全国多校重现赛一)E-FFF at Valentine

    At Valentine's eve, Shylock and Lucar were enjoying their time as any other couples. Suddenly, LSH, ...

  5. (全国多校重现赛一)B-Ch's gifts

    Mr. Cui is working off-campus and he misses his girl friend very much. After a whole night tossing a ...

  6. (全国多校重现赛一)A-Big Binary Tree

    You are given a complete binary tree with n nodes. The root node is numbered 1, and node x's father ...

  7. 2016ACM/ICPC亚洲区沈阳站-重现赛赛题

    今天做的沈阳站重现赛,自己还是太水,只做出两道签到题,另外两道看懂题意了,但是也没能做出来. 1. Thickest Burger Time Limit: 2000/1000 MS (Java/Oth ...

  8. 2016 CCPC 东北地区重现赛

    1. 2016 CCPC 东北地区重现赛 2.总结:弱渣,只做出01.03.05水题 08   HDU5929 Basic Data Structure    模拟,双端队列 1.题意:模拟一个栈的操 ...

  9. 2016 CCPC长春重现赛

    1.2016中国大学生程序设计竞赛(长春)-重现赛 2.总结:会做的太少,应变能力也不行,或者说猜题目的能力不行 02  水 04  HDU 5914  Triangle 1.题意:1~n,n个数,问 ...

随机推荐

  1. 深入理解计算机系统 第二章 信息的表示和处理 Part1 第二遍

    <深入理解计算机系统> 第三版 第二遍读这本书,每周花两到三小时时间,能读多少读多少(这次看了 22 ~ 28 页) 第一遍对应笔记链接 https://www.cnblogs.com/s ...

  2. 3. 彤哥说netty系列之Java BIO NIO AIO进化史

    你好,我是彤哥,本篇是netty系列的第三篇. 欢迎来我的公从号彤哥读源码系统地学习源码&架构的知识. 简介 上一章我们介绍了IO的五种模型,实际上Java只支持其中的三种,即BIO/NIO/ ...

  3. Django 通过 ORM 实现表的CRUD

    Django 通过 ORM 实现表的CRUD 单表的创建 修改 setting.py 文件 DATABASES = { 'default': { 'ENGINE': 'django.db.backen ...

  4. pat 1023 Have Fun with Numbers(20 分)

    1023 Have Fun with Numbers(20 分) Notice that the number 123456789 is a 9-digit number consisting exa ...

  5. nyoj 41-三个数从小到大排序(STL --> sort(a, a+n) 升序)

    41-三个数从小到大排序 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:31 submit:44 题目描述: 现在要写一个程序,实现给三个数排序的功 ...

  6. 基于 cobbler 实现自动安装 linux 系统

    使用 cobbler 实现自动安装 centos 6.7系统 1.yum install cobbler -y 安装 cobbler ,有依赖关系,会自动把 TFTP .HTTP 服务安装上:cobb ...

  7. C. Present(二分 + 扫描线)

    题目链接:http://codeforces.com/contest/460/problem/C 题意: n盆花,浇k次水, 每次可使花高度 + 1, 每次可浇相邻的w盆,ai 表示 i-th盆花 的 ...

  8. Win32 COM组件 x Android Service (二)

    继续上一篇. 如果不使用AIDL(Android Interface Definition Language接口描述语言)编写服务接口的话,(COM组件,CORBA组件,ICE组件以及其它远程调用框架 ...

  9. python进程池与线程池

    为什么会进行池化? 一切都是为了效率,每次开启进程都会分配一个属于这个进程独立的内存空间,开启进程过多会占用大量内存,系统调度也会很慢,我们不能无限的开启进程. 进程池原来大概如下图 假设有100个任 ...

  10. Linux\CentOS MySql 安装与配置

    一.MySQL 简介 MySQL 是一个关系型数据库管理系统,是MySQL AB公司开发,现在属于 Oracle 旗下产品. MySQL 采用标准化语言.体积小.速度快.成本低.开源等特点使得一些中小 ...