POJ-2387 Til the Cows Come Home ( 最短路 )
题目链接: http://poj.org/problem?id=2387
Description
Farmer John's field has N (2 <= N <= 1000) landmarks in it,
uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in
which Bessie stands all day is landmark N. Cows travel in the field
using T (1 <= T <= 2000) bidirectional cow-trails of various
lengths between the landmarks. Bessie is not confident of her navigation
ability, so she always stays on a trail from its start to its end once
she starts it.
Given the trails between the landmarks, determine the minimum
distance Bessie must walk to get back to the barn. It is guaranteed
that some such route exists.
Input
* Lines 2..T+1: Each line describes a trail as three space-separated
integers. The first two integers are the landmarks between which the
trail travels. The third integer is the length of the trail, range
1..100.
Output
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output
90 最短路模板题,求1到n的最短路
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<stack>
#include<queue> using namespace std; int way[][];
bool flag[];
int main(){
ios::sync_with_stdio( false ); int n, m; while( cin >> m >> n ){
int x, y, d;
memset( way, 0x3f3f3f3f, sizeof( way ) );
memset( flag, false, sizeof( flag ) );
for( int i = ; i < m; i++ ){
cin >> x >> y >> d;
way[x][y] = way[y][x] = min( way[x][y], d );
} for( int k = ; k < n - ; k++ ){
int minv = 0x3f3f3f3f, mini; for( int i = ; i < n; i++ ){
if( !flag[i] && minv > way[n][i] ){
minv = way[n][i];
mini = i;
}
} flag[mini] = true;
for( int i = ; i < n; i++ ){
if( !flag[i] ){
way[n][i] = min( way[n][i], way[n][mini] + way[mini][i] );
}
}
} cout << way[n][] << endl;
} return ;
}
POJ-2387 Til the Cows Come Home ( 最短路 )的更多相关文章
- POJ 2387 Til the Cows Come Home(最短路模板)
题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...
- POJ 2387 Til the Cows Come Home --最短路模板题
Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...
- POJ 2387 Til the Cows Come Home (图论,最短路径)
POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...
- POJ.2387 Til the Cows Come Home (SPFA)
POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...
- POJ 2387 Til the Cows Come Home
题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33015 Accepted ...
- POJ 2387 Til the Cows Come Home (最短路 dijkstra)
Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...
- POJ 2387 Til the Cows Come Home 【最短路SPFA】
Til the Cows Come Home Description Bessie is out in the field and wants to get back to the barn to g ...
- POJ 2387 Til the Cows Come Home Dijkstra求最短路径
Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...
随机推荐
- LongAdder和AtomicLong性能对比
jdk1.8中新原子操作封装类LongAdder和jdk1.5的AtomicLong和synchronized的性能对比,直接上代码: package com.itbac.cas; import ja ...
- tcp四次挥手为什么要等待2MSL
之前所说了解有两个原因: 1.防止客户端最后一次发给服务器的确认在网络中丢失以至于客户端关闭,而服务端并未关闭,导致资源的浪费. 2.等待最大的2msl可以让本次连接的所有的网络包在链路上消失,以防造 ...
- JavaFX OnMouseClick
在JavaFX开发环境中,遇到一些坑是难免的,而且资料少得可怜! 先说一下我遇到的问题 : 只是一个点击事件而已 : 首先我有这么个界面 : 接下来呢 ? 我需要点击右上角的X,然后显示遮罩,弹出对话 ...
- ASP.NET Core MVC 之视图组件(View Component)
1.视图组件介绍 视图组件是 ASP.NET Core MVC 的新特性,类似于局部视图,但它更强大.视图组件不使用模型绑定,并且仅依赖于调用它时所提供的数据. 视图组件特点: 呈块状,而不是整个响应 ...
- java并发编程(九)----(JUC)CyclicBarrier
上一篇我们介绍了CountDownlatch,我们知道CountDownlatch是"在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待",即CountDownL ...
- HTML5 Device Access (设备访问)
camera api (含图片预览) 参考地址 主要为利用input type=file, accept="image/*" 进行处理 图片预览方式(两种) const file ...
- 全球十大OTA 谁能有一席之地?
全球十大OTA 谁能有一席之地? http://www.traveldaily.cn/article/78381/1 2014-03-05 来源:i黑马 随着旅游行业日新月异的发展,在线旅游网站的出现 ...
- Eureka 缓存结构以及服务感知优化
目录 Eureka-Client获取注册信息 Eureka-Server管理注册信息 服务感知优化 果然好记性不如烂笔头,再简单的东西不记录下来总是会忘的! 本文首先会分析eureka中的缓存架构.并 ...
- https理论及实践
什么是https协议? http协议以明文的方式在网络中传输,安全性难以保证,https在http协议的基础上加入SSL/TLS层.TLS是SSL协议的最新版本,SSL使用SSL数字证书在通信两端建立 ...
- 浅谈python中文件和文件夹的相关操作
文件操作 文件的打开与关闭 打开文件 使用open(文件名,访问方式)函数,可以打开一个已存在的文件,或者创建一个新的文件. 示例如下: f = open('test.txt') # 访问方式可以省略 ...