Java生鲜电商平台-电商中海量搜索ElasticSearch架构设计实战与源码解析
Java生鲜电商平台-电商中海量搜索ElasticSearch架构设计实战与源码解析
生鲜电商搜索引擎的特点
众所周知,标准的搜索引擎主要分成三个大的部分,第一步是爬虫系统,第二步是数据分析,第三步才是检索结果。首先,电商的搜索引擎并没有爬虫系统,因为所有的数据都是结构化的,一般都是微软的数据库或者 Oracle 的数据库,所以不用像百度一样用「爬虫」去不断去别的网站找内容,当然,电商其实也有自己的「爬虫」系统,一般都是抓取友商的价格,再对自己进行调整。
第二点,就是电商搜索引擎的过滤功能其实比搜索功能要常用。甚至大于搜索本身。什么是过滤功能?一般我们网站买东西的时候,搜了一个关健词,比如尿不湿,然后所有相关品牌或者其他分类的选择就会呈现在我们面前。对百度而言,搜什么词就是什么词,如果是新闻的话,可能在时间上会有一个过滤的选项。
第三点,电商搜索引擎支持各种维度的排序,包括支持好评、销量、评论、价格等属性的排序。而且对数据的实时性的要求非常高。对一般的搜索引擎,只有非常重要的网站,比如一些重量级的门户网站,百度的收录是非常快的,但是对那些流量很小的网站,可能一个月才会爬一次。电商搜索对数据的实时性要求主要体现在价格和库存两个方面。
电商搜索引擎另一个特点就是不能丢品,比如我们在淘宝、天猫开了个店铺,然后好不容易搞了一次活动,但是却搜不到了,这是无法忍受的。除此之外,电商搜索引擎与推荐系统和广告系统是相互融合的,因为搜素引擎对流量的贡献是最大的,所以大家都希望把广告系统能跟其融合。当然,还有一点非常重要,就是要保证绝对的高可用,而且不能宕机。
电商搜索引擎的架构
因为电商搜索引跟一般的搜索引擎区别很大,所以在架构的设计上也独具特色。首先,搜索引擎的实现方式有很多种,有谷歌、百度、搜狗这种非常大的公司,也有京东、淘宝、当当这样的电商搜索引擎,很多中小型的电商可能更喜欢用一个开源的搜索引擎。所以总的来说,主要包括以下这几种方式:
第一种是「Lucene+自己封装」,只用来做检索,然后封装,后面所有的 ES,这两个是完整的解决方案,而且包括索引所有的东西,只需要部署好业务逻辑,然后查找结果就可以了。
第二种就是 Solr,这是一个高性能,采用 Java5 开发,基于 Lucene 的全文搜索服务器。同时对其进行了扩展,提供了比 Lucene 更为丰富的查询语言,同时实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面,是一款非常优秀的全文搜索引擎。
第三种是 ElasticSearch,这是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于 RESTful web 接口。Elasticsearch 是用 Java 开发的,并作为 Apache 许可条款下的开放源码发布,目前使用的也非常多。
这里提一下,当当的搜索引擎是自己实现的,。现在,新兴的互联网公司大部分都是使用第一种或者第二种,数据量比较大的一般采用第三种。
电商搜索引擎标配模块
接下来我想讲一下,如果我们自己做一个搜索引擎的话需要实现哪些功能(上图是电商搜索引擎的标准模块),其实不止是电商搜索引擎,除了通搜的搜索引擎,其他的搜索引擎也是使用这样的标配。
对检索模块而言,首先是对用户的意图进行分析,根据用户的搜索词来进行纯算法的实现。比如用户的搜索词是「黑包包」,其实用户的本意就是买一个黑色的包,但是这个「包」可以跟别的词组合在一起,甚至在搜索结果中会出现「包子」。所以,这就需要 query 分析系统来做,告诉检索系统,你需要主要在服装鞋帽中的分类去找,而不是生鲜食品类。
设计到技术层面,当当网使用的是 C++。如果构建一个性能好的系统,一些老一点的公司,大家都是在使用 C++ 或者是 C 语言。不止是当当网,其实很多公司都是使用的 C 或者 C++ 实现的搜索引擎。
数据更新模块
第二个模块就是数据更新模块,该模块负责生成索引。而数据中心模块主要做的事情,就是将原始的结构化数据,变成一个可供检索系统使用的搜索数据库。当然,数据更新模块和检索模块是分开还是合并呢?其实从本质上讲,都是一堆代码,完全可以写在一个进程里。当然,也可以分开,通过网络往外输入,各自都有道理。第一种是简单粗暴型的,如果是普通电商,像生鲜电商,数据量不大,实时性、季节性很强,就可以把两个系统用一个进程来完成。但是如果到了百万、千万甚至上亿级别的话,就不可能部在一台机器上了。
上图就是当两个系统合并在一起的时候,红色部分就是检索系统,黄色部分是上游产生数据的系统,如果是淘宝的话,对接就是淘宝的商户,当当网对接是市场部的人员,他们将数据录入系统,推到数据库,然后向下进行传送,最终建立一个索引。
上图中的蓝色部分就是业务逻辑,因为电商的搜索引擎业务需求量非常高,尤其是现在大家都喜欢用手机进行购物,像手机专享价就是一个新的业务,这也意味着需要一个专用的模块来处理这些商用的逻辑。
此外,就是用户行为的分析,我们搜集到的日志还有其他相关的数据都会存到 Hadoop 集群上去,通过离线计算,然后传给商业模块或者排序模块进行排序和打分,并提供给用户更好的使用体验。
出问题是不可避免的!如何解决?
虽然整理来看,设计的思路是非常合理的,但是还是会出现问题。一般而言,一个成熟的电商搜索系统,它的问题都很集中,要这几种情况:首先就是 Bug,当然这是所有系统都会遇到的问题;第二个就是并发,但是搜索系统是没办法进行分库分表,所以能做的就是索引切分;最后一点就是监控,包括问题追踪、日志系统和监控系统,那么为了解决这些问题,我们应该怎么做?
首先,针对 Bug 问题,只能靠自动化运维去解决(这里也推荐使用 OneAPM 工具);第二个就是高并发的问题,目前主要是靠缓存和横向扩展。而缓存和横向扩展怎么应用到系统中去,这个很关键。很多人也说可以换一种语言,比如讲 Python 换成 C++,但实际情况下,换语言并不能解决并发的问题,好的数据结构的设计比换一种语言更能提高性能,所以一般解决高并发问题的也就是缓存和横向扩展。
第三个就是使用用 FLUME 日志系统(Flume 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume 支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume 提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力)。其实,Flume 会把集群上每一个节点的日志全都收集起来,这样做起来有两个好处,第一是现场出问题,可以先回滚出 Bug,然后进行查询。第二个就是对日志进行搜集,然后做用户行为分析,查看用户点击了多少次,从何处导入的流量等等,从而便于更好的进行排序。
然后讲一下缓存的问题。一般搜索的缓存可能分为两级缓存,据我观察,像搜狗可能是使用页面级缓存,而百度可能用的是索引级的缓存。比如在搜狗搜索一个词,开始时可能需要 40 毫秒,然后再搜的话,就可能一下子降到 1 毫秒。这就是页面级缓存。而百度可能第一次搜索用了 40 毫秒,第二次就是 25 毫秒,它并不是把页面给缓存下来,而是将索引的倒排链缓存,级别其实是不一样的。
电商搜索很多使用的是两级缓存,对于特别热门的词汇,我们可以做页面级缓存,而页面级缓存的时间只有 15 秒到 20 秒。但是像价格这样的东西不能缓存,需要前台页面去反拉价格。第二级就是索引级别的缓存,实际上也是自建的一个缓存系统。另外,排序也有缓存,因为排序的结果不太会有太大的变化。
上图是当当的搜索架构,这里有一个集群是做数据分析的,上面备满了数据。
首先,集群之间采用什么样的通讯方式?我们主要使用 ZMQ(这是一个简单好用的传输层,像框架一样的一个 socket library,使得 Socket 编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩)。原因其实只有一个,就是快,非常快,比较适合数据量比较大的业务。
如何避免冷启动?
最后就是冷启动的问题,这个问题是很多电商网站都很头疼的问题。尤其是随着电商网站的商品数量达到一定量级的时候,比如已经上亿了,像淘宝、天猫的话应该更多。如果重建了一次索引需要启动,或者新上线了一个业务模块,需要重启系统,是很麻烦的。
当然,当集群大了以后有很多方法,比如分开启动之类的,至于技术嘛,一般索引的加载都是使用 Lunix 标准的 MMAP(MMAP 将一个文件或者其它对象映射进内存。文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零。MMAP 在用户空间映射调用系统中作用很大),这样启动速度会很快,但是系统会有预热时间,前面一些时间的查询会比较慢
如果数据量不是特别大的话,而且现在内存也那么便宜,完全可以将数据一次性读入内存,因为 mmap 的操作毕竟性能没有直接内存来得快。
第三种的话,就是尽量减少做全量数据的频率,避免整个系统的重启,这需要定期做一下索引的优化,把没用的索引干掉。
如果是新上了一个业务模块需要重启集群,这样的事情最好不要发生,这就是架构有问题了,将业务模块变成外部的模块或者插件进行上线才是正确的,不然每上线一个模块需要重启集群,这谁都受不了。
Java生鲜电商平台-电商中海量搜索ElasticSearch架构设计实战与源码解析的更多相关文章
- Java中的容器(集合)之HashMap源码解析
1.HashMap源码解析(JDK8) 基础原理: 对比上一篇<Java中的容器(集合)之ArrayList源码解析>而言,本篇只解析HashMap常用的核心方法的源码. HashMap是 ...
- 【Java实战】源码解析Java SPI(Service Provider Interface )机制原理
一.背景知识 在阅读开源框架源码时,发现许多框架都支持SPI(Service Provider Interface ),前面有篇文章JDBC对Driver的加载时应用了SPI,参考[Hibernate ...
- Java中的容器(集合)之ArrayList源码解析
1.ArrayList源码解析 源码解析: 如下源码来自JDK8(如需查看ArrayList扩容源码解析请跳转至<Java中的容器(集合)>第十条):. package java.util ...
- MapReduce中一次reduce方法的调用中key的值不断变化分析及源码解析
摘要:mapreduce中执行reduce(KEYIN key, Iterable<VALUEIN> values, Context context),调用一次reduce方法,迭代val ...
- 神经网络中 BP 算法的原理与 Python 实现源码解析
最近这段时间系统性的学习了 BP 算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指正. 什么是梯度下降和链式求导法则 假设我们有一个函数 J(w),如下图所示. 梯度下降示意图 现在,我们 ...
- [Java多线程]-J.U.C.atomic包下的AtomicInteger,AtomicLong等类的源码解析
Atomic原子类:为基本类型的封装类Boolean,Integer,Long,对象引用等提供原子操作. 一.Atomic包下的所有类如下表: 类摘要 AtomicBoolean 可以用原子方式更新的 ...
- java代码生成器 快速开发平台 二次开发 外包项目利器 springmvc SSM后台框架源码
. 权限管理:点开二级菜单进入三级菜单显示 角色(基础权限)和按钮权限 角色(基础权限): 分角色组和角色,独立分配菜单权限和增删改查权限. 按钮权限: 给角色分配按钮权限.2 ...
- 【Java实战】源码解析为什么覆盖equals方法时总要覆盖hashCode方法
1.背景知识 本文代码基于jdk1.8分析,<Java编程思想>中有如下描述: 另外再看下Object.java对hashCode()方法的说明: /** * Returns a hash ...
- 关于原生js中函数的三种角色和jQuery源码解析
原生js中的函数有三种角色: 分两大种: 1.函数(最主要的角色)2.普通对象(辅助角色):函数也可以像对象一样设置属于本身的私有属性和方法,这些东西和实例或者私有变量没有关系两种角色直接没有必然的关 ...
随机推荐
- 哈希算法原理【Java实现】(十)
前言 在入学时,学校为我们每位童鞋建立一个档案信息,当然每个档案信息都对应档案编号,还有比如在学校图书馆,图书馆为每本书都编了唯一的一个书籍号,那么问题来了,当我们需要通过档案号快速查到对应档案信息或 ...
- java架构之路(Sharding JDBC)mysql5.7yum安装和主从
安装mysql5.7单机 1.获取安装yum包 [root@iZm5e7sz135n16ua2rmbk6Z local]# wget http://dev.mysql.com/get/mysql57- ...
- Wpf Dispatcher.BeginInvoke((Action)delegate{}));
<Window x:Class="WpfApplication1.MainWindow" xmlns="http://schemas.microsoft.com/w ...
- jwt认证生成后的token后端解析
一.首先前端发送token token所在的位置headers {'authorization':token的值',Content-Type':application/json} 在ajax写 //只 ...
- CSS样式继承性
CSS样式继承介绍 外层元素身上的样式会被内层元素所继承. 当内层元素身上的样式与外层的元素身上的样式相同时内层元素样式会覆盖外层元素样式. 并不是所有的样式都能够继承,只有文本与字体样式属性才能够被 ...
- js实现防抖函数和节流函数
防抖函数(debounce) 含义:防抖函数指的是在特定的时间内没有再次触发,才得以进行接下来的函数运行: 用途:当window.onresize不断的调整大小的时候,为了避免不断的重排与重绘,可以用 ...
- 【转载】Android内存泄漏的8种可能
Java是垃圾回收语言的一种,其优点是开发者无需特意管理内存分配,降低了应用由于局部故障(segmentation fault)导致崩溃,同时防止未释放的内存把堆栈(heap)挤爆的可能,所以写出来的 ...
- Oracle 快速配置连接服务
[net Manager配置] oracle客户端连接,或者代码连接时,需要配置本地连接服务. [快速配置] ①找到 tnsnames.ora 文件,使用记事本打开 ② TEST{#服务名} = (D ...
- 机器学习--PCA算法代码实现(基于Sklearn的PCA代码实现)
一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets ...
- SpringMVC重定向路径中带中文参数
SpringMVC重定向路径中带中文参数 springboot重定向到后端接口测试 package com.mozq.http.http_01.demo; import org.springframe ...