夜间多个任务同时并行,总有几个随机性有任务失败,查看日志: 刷选关键词 Caused by  或者  FAILED

  cat -n ads_channel.log |grep "Caused by"
Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Rename cannot overwrite non empty destination directory /tmp/hadoop-hdfs/mapred/local/
Caused by: java.io.IOException: Rename cannot overwrite non empty destination directory /tmp/hadoop-hdfs/mapred/local/
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
java.io.IOException: java.util.concurrent.ExecutionException: org.apache.hadoop.fs.FileAlreadyExistsException: rename destination /tmp/hadoop-hdfs/mapred/local/ already exists.
at org.apache.hadoop.mapred.LocalDistributedCacheManager.setup(LocalDistributedCacheManager.java:)
at org.apache.hadoop.mapred.LocalJobRunner$Job.<init>(LocalJobRunner.java:)
at org.apache.hadoop.mapred.LocalJobRunner.submitJob(LocalJobRunner.java:)
at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:)
at org.apache.hadoop.mapreduce.Job$.run(Job.java:)
at org.apache.hadoop.mapreduce.Job$.run(Job.java:)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)
at org.apache.hadoop.mapreduce.Job.submit(Job.java:)
at org.apache.hadoop.mapred.JobClient$.run(JobClient.java:)
at org.apache.hadoop.mapred.JobClient$.run(JobClient.java:)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)
at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:)
at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:)
at org.apache.hadoop.hive.ql.exec.mr.ExecDriver.execute(ExecDriver.java:)
at org.apache.hadoop.hive.ql.exec.mr.MapRedTask.execute(MapRedTask.java:)
at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:)
at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:)
at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.run(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.run(Driver.java:)
at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.hadoop.util.RunJar.run(RunJar.java:)
at org.apache.hadoop.util.RunJar.main(RunJar.java:)
Caused by: java.util.concurrent.ExecutionException: org.apache.hadoop.fs.FileAlreadyExistsException: rename destination /tmp/hadoop-hdfs/mapred/local/ already exists.
at java.util.concurrent.FutureTask.report(FutureTask.java:)
at java.util.concurrent.FutureTask.get(FutureTask.java:)
at org.apache.hadoop.mapred.LocalDistributedCacheManager.setup(LocalDistributedCacheManager.java:)
... more
Caused by: org.apache.hadoop.fs.FileAlreadyExistsException: rename destination /tmp/hadoop-hdfs/mapred/local/ already exists.
at org.apache.hadoop.fs.FileSystem.rename(FileSystem.java:)
at org.apache.hadoop.fs.DelegateToFileSystem.renameInternal(DelegateToFileSystem.java:)
at org.apache.hadoop.fs.AbstractFileSystem.renameInternal(AbstractFileSystem.java:)
at org.apache.hadoop.fs.FilterFs.renameInternal(FilterFs.java:)
at org.apache.hadoop.fs.AbstractFileSystem.rename(AbstractFileSystem.java:)
at org.apache.hadoop.fs.FileContext.rename(FileContext.java:)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:)
at java.util.concurrent.FutureTask.run(FutureTask.java:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)
Job Submission failed with exception 'java.io.IOException(java.util.concurrent.ExecutionException: org.apache.hadoop.fs.FileAlreadyExistsException: rename destination /tmp/hadoop-hdfs/mapred/local/1579374502408 already exists.)'
FAILED: Execution Error, return code from org.apache.hadoop.hive.ql.exec.mr.MapRedTask

 扩展:

cat -n ads_channel.log |grep "Caused by" 或者 grep ads_channel.log  -e "Caused by" 或者 grep -E "Caused by|FAILED"  ads_channel.log #两个关键词
grep "2019-12-21" ads_channel.log | grep "Caused by" ads_channel.log
cat ads_channel.log | grep "Caused by" -B ##根据关键字查看前20行日志
cat ads_channel.log | grep "Caused by" -A ##根据关键字查看后20行日志
cat ads_channel.log | grep "Caused by" -C #根据关键字查看前后10行日志 说明:
-A 表示关键字之后,After
-B 表示关键字之前,Before
-C 表示关键字前后,Context vim ads_channel.log
:set nu : (跳转到指定行数) 实时查询多个关键字的日志信息
命令:tail -f ads_channel.log |grep -E “Caused by"

问题原因:

当多个线程运行MR程序时hadoop出现的问题:
        https://issues.apache.org/jira/browse/MAPREDUCE-6992
        https://issues.apache.org/jira/browse/MAPREDUCE-6441

hdfs会创建一个以当前时间的时间戳命名的文件.当两个mr任务在同一毫秒提交,造成了文件的并发访问问题.

yarn的运行模式:

1-本地模式(LocalJobRunner实现)
mapreduce.framework.name设置为local,则不会使用YARN集群来分配资源,在本地节点执行。在本地模式运行的任务,无法发挥集群的优势。注:在web UI是查看不到本地模式运行的任务。

对 hive有些了解的人都会知道,hive 会将 SQL 语句最终转化成分布式执行的 mapreduce 任务计划。对于大数量集的数据启动 mapreduce 所花费的时间是渺小的。因为数据量大,并且分布再不同的机器上,在不同的机器上处理,这样做是 hive 的优势之一。然而当处理小数量,并且数据都聚集再一台机器上时,那么启动本地模式是非常有意的,不可避免的启动 mapreduce,将数据拉回客户端,本地处理,这样减少了分处理后合并花费的时间。如此一来,对数据量比较小的操作,就可以在本地执行,这样要比提交任务到集群执行效率要快很多。
启动本地模式,需要配置如下参数:

     hive.exec.mode.local.auto                    决定 Hive 是否应该自动地根据输入文件大小,在本地运行。
hive.exec.mode.local.auto.inputbytes.max 最大输入数据量,当输入数据量小于这个值的时候将会启动本地模式,默认是 128M。
hive.exec.mode.local.auto.tasks.max 最大输入文件个数,当输入文件个数小于这个值的时候将会启动本地模式。(默认4)

当一个job满足如下条件才能真正使用本地模式:

  .job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)
.job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)
.job的reduce数必须为0或者1

2-Yarn模式(YARNRunner实现)
        mapreduce.framework.name设置为yarn,当客户端配置mapreduce.framework.name为yarn时, 客户端会使用YARNRunner与服务端通信, 而YARNRunner真正的实现是通过ClientRMProtocol与RM交互, 包括提交Application, 查询状态等功能。但是根据任务的特性,分为两种方式执行任务

3-Uber模式:

为降低小作业延迟而设计的一种模式,所有任务,不管是Map Task,还是Reduce Task,均在同一个Container中顺序执行,这个Container其实也是MRAppMaster所在Container

4-Non-Uber模式:

对于运行时间较长的大作业,先为Map Task申请资源,当Map Task运行完成数目达到一定比例后再为Reduce Task申请资源。

解决办法:

1-在不改源代码的情况下,取消自动启动本地模式,根据集群环境,临时在运行程序时设置:

set hive.exec.mode.local.auto = false
2-在调度系统中设置设置失败重试.
azkaban配置失败重试如下:
type =command
command = xxxxxx
retries=
retry.backoff= #毫秒数

参考:https://blog.csdn.net/weixin_39445556/article/details/80348976

在官网找到了这个bug,在2.7.1版本中已经修复了这个bug,对集群进行升级:

This is a bug in Hadoop 2.6.0. It's been marked as fixed but it still happens occasionally (see: https://issues.apache.org/jira/browse/YARN-2624).

https://stackoverflow.com/questions/30857413/hadoop-complains-about-attempting-to-overwrite-nonempty-destination-directory

[hdfs@el-hadoop- logs]$ hadoop dfsadmin -report  ##查看hadoop状况:
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it. Configured Capacity: (1.13 TB)
Present Capacity: (1.05 TB)
DFS Remaining: (1.02 TB)
DFS Used: (27.28 GB)
DFS Used%: 2.54%
Under replicated blocks:
Blocks with corrupt replicas:
Missing blocks:
Missing blocks (with replication factor ): -------------------------------------------------
Live datanodes (): Name: 172.26.0.106: (el-hadoop-)
Hostname: el-hadoop-
Rack: /default
Decommission Status : Normal
Configured Capacity: (385.73 GB)
DFS Used: (9.07 GB)
Non DFS Used: (20.54 GB)
DFS Remaining: (335.73 GB)
DFS Used%: 2.35%
DFS Remaining%: 87.04%
Configured Cache Capacity: ( GB)
Cache Used: ( B)
Cache Remaining: ( GB)
Cache Used%: 0.00%
Cache Remaining%: 100.00%
Xceivers:
Last contact: Sat Dec :: CST Name: 172.26.0.108: (el-hadoop-)
Hostname: el-hadoop-
Rack: /default
Decommission Status : Normal
Configured Capacity: (385.73 GB)
DFS Used: (9.10 GB)
Non DFS Used: ( B)
DFS Remaining: (356.24 GB)
DFS Used%: 2.36%
DFS Remaining%: 92.35%
Configured Cache Capacity: ( GB)
Cache Used: ( B)
Cache Remaining: ( GB)
Cache Used%: 0.00%
Cache Remaining%: 100.00%
Xceivers:
Last contact: Sat Dec :: CST Name: 172.26.0.109: (el-hadoop-)
Hostname: el-hadoop-
Rack: /default
Decommission Status : Normal
Configured Capacity: (385.73 GB)
DFS Used: (9.10 GB)
Non DFS Used: ( B)
DFS Remaining: (356.24 GB)
DFS Used%: 2.36%
DFS Remaining%: 92.35%
Configured Cache Capacity: ( GB)
Cache Used: ( B)
Cache Remaining: ( GB)
Cache Used%: 0.00%
Cache Remaining%: 100.00%
Xceivers:
Last contact: Sat Dec :: CST

多个线程运行MR程序时hadoop出现的问题的更多相关文章

  1. Eclipse调用hadoop2运行MR程序(转)

    hadoop:hadoop2.2 ,windows myeclipse环境: Eclipse调用hadoop运行MR程序其实就是普通的java程序可以提交MR任务到集群执行而已.在Hadoop1中,只 ...

  2. 在集群上运行caffe程序时如何避免Out of Memory

    不少同学抱怨,在集群的GPU节点上运行caffe程序时,经常出现"Out of Memory"的情况.实际上,如果我们在提交caffe程序到某个GPU节点的同时,指定该节点某个比较 ...

  3. vs2010运行C程序时,运行结果窗口一闪而过

    摘要:vs2010运行C程序时,运行结果窗口一闪而过; ------------------------------------------------------------ Ctrl F5测试运行 ...

  4. eclipse运行spark程序时日志颜色为黑色的解决办法

    自从开始学习spark计算框架以来,我们老师教的是local模式下用eclipse运行spark程序,然后我在运行spark程序时,发现控制台的日志颜色总是显示为黑色,哇,作为程序猿总有一种强迫症,发 ...

  5. 命令行运行Java程序时出现错误

    在命令行运行Java程序时出现下面错误 Error: Could not create the Java Virtual Machine. Error: A fatal exception has o ...

  6. 在命令提示符下,运行Java程序时,提示"找不到或无法加载主类"

    小白:在命令提示符下,运行Java程序时,提示"找不到或无法加载主类". 大神:运行Java程序的作用是让Java解释器装载,检验并运行字节码文件(.class).因此,在运行Ja ...

  7. 攻城狮在路上(陆)-- 提交运行MapReduce程序到hadoop集群运行

    此种方式不能直接在eclipse中调试代码. 首先需要在src下放置服务器上的hadoop配置文件:core-site.xml\yarn-site.xml\hdfs-site.xml\mapred-s ...

  8. 2 weekend110的mapreduce介绍及wordcount + wordcount的编写和提交集群运行 + mr程序的本地运行模式

    把我们的简单运算逻辑,很方便地扩展到海量数据的场景下,分布式运算. Map作一些,数据的局部处理和打散工作. Reduce作一些,数据的汇总工作. 这是之前的,weekend110的hdfs输入流之源 ...

  9. 在cmd窗口下运行Java程序时无法找到主类的解决办法

    我是Java的初学者,昨天在cmd窗口下运行一段Java程序时总是有问题,可以编译但无法执行. 也就是javac时正确,一旦java时就不对了,提示找不到或无法加载主类,经百度谷歌再加上自己的摸索终于 ...

随机推荐

  1. 【CSS】271- RGB、HSL、Hex网页色彩,看完这篇全懂了

    作者:CSS可乐 http://csscoke.com/2015/01/01/rgb-hsl-hex/ 网页使用到的色彩标示方法中,从古早时期大家都在用的16进位码(#000000).RGB色值标示. ...

  2. selenium处理常见自动化场景

    目录 定位一组对象 层级定位 定位frame中的对象 alert/confirm/prompt处理 下拉框处理 调用javascript 多窗口处理 处理验证码 处理cookie 定位一组对象 web ...

  3. Docker--Docker初体验

    echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 先来接 ...

  4. rails 构建 API

    我是来鼓吹使用 Rails 写 API 的. 原文在此: https://labs.kollegorna.se/blog/2015/04/build-an-api-now/ 原文有一个很大的缺陷就是读 ...

  5. 建议2:注意Javascript数据类型的特殊性---(1)防止浮点数溢出

    1.防止浮点数溢出 二级制的浮点数不能正确地处理十进制的小数,因此 0.1+0.2不等于0.3 num = 0.1+0.2; //0.30000000000000004 这是JavaScript中经常 ...

  6. 关于JAVA的Random类的冷知识(转自菜鸟V)

    JAVA的Random类(转) Random类 (java.util) Random类中实现的随机算法是伪随机,也就是有规则的随机.在进行随机时,随机算法的起源数字称为种子数(seed),在种子数的基 ...

  7. css应用视觉设计

    应用视觉设计:创建一个 CSS 线性渐变 HTML元素的背景色并不局限于单色.css还提供了颜色过渡,也就是渐变.可以通过background里面的linear-gradient()来实现线性渐变,下 ...

  8. 在WPF中开启摄像头扫描二维码(Media+Zxing)

    近两天项目中需要添加一个功能,是根据摄像头来读取二维码信息,然后根据读出来的信息来和数据库中进行对比显示数据. 选择技术Zxing.WPFMediaKit.基本的原理就是让WPFmediaKit来对摄 ...

  9. python内置模块-datetime

    摘录 廖雪峰网站 datetime是python内置的处理日期和时间的标准库 获取当前日期和时间 >>> from datetime import datetime >> ...

  10. SpringMVC 数据交互

    为什么使用JSON进行数据交互? JSON数据格式比较简单.解析比较方便,在接口调用及HTML页面Ajax调用时较常用. JSON交互方式 请求是Key/Value,响应是JSON(推荐使用) 请求是 ...