快速排序介绍

快速排序(Quick Sort)使用分治法策略,其基本思想是:通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另外一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序的目的。

快排流程:

  1. 从数列中选取一个基数
  2. 将所有比基数小的摆放在基数前面,所有比基数大的摆在基数的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于数列的中间位置。
  3. 递归地把"基数前面的子数列"和"基数后面的子数列"进行快速排序。

举例说明:

(PS:本例参考一个大神的博客:http://www.cnblogs.com/skywang12345/p/3596746.html#a1)

数列a={30,40,60,10,20,50}为例,演示它的快速排序过程(如下图)



上图只是给出了第1趟快速排序的流程,按照同样的方法,对子数列进行递归遍历。最后可以得到有序序列。

代码实现:

	//对顺序表elem进行快速排序
public void quickSort(int[] elem) {
QSort_2(elem, 1, elem.length - 1);
} //对顺序表elem中的子序列elem[start...end]做快速排序
public void QSort(int[] elem, int start, int end) { int pivot;
if(start < end) {
pivot = Partition(elem ,start, end); QSort(elem, start, pivot - 1);
QSort(elem, pivot + 1, end);
}
} /**
* 交换顺序表elem中字表记录,使基数记录到位,并返回其所在位置
* 此时在它之前(后)的记录均不大(小)于它
* @param elem
* @param low
* @param high
* @return
*/
public int Partition(int[] elem, int low, int high) { int pivotkey = elem[low]; while(low < high) { while((low < high) && (elem[high] >= pivotkey)) {
high--;
}
swap(elem, low, high); while((low < high) && (elem[low] <= pivotkey)) {
low++;
}
swap(elem, low, high);
}
return low;
}

快速排序复杂度分析

(PS:由于本人数学功底太弱,并没有理解快排复杂度的推演公式,在此只是摘抄于《大话数据机构》)

在最优情况下,如果排序n个关键字,其递归树的深度就是[log2log_2log2​n] + 1([x]表示不大于x的最大整数),即仅需要递归log2log_2log2​n次,需要时间为T(n)的话,第一次Partiation应该是需要对整个数组扫描一遍,做n次比较。然后获得的基数将数组一分为二,那么各自还需要T(n2\frac{n}{2}2n​)的时间(注意这是最好情况下,所以平分两半)。于是不断划分下去,就有下面不等式推断

T(n) ≤ 2T(n2\frac{n}{2}2n​) + n, T(1)=0

T(n) ≤2(2T(n4\frac{n}{4}4n​)+n2\frac{n}{2}2n​) + n=4T(n4\frac{n}{4}4n​) +2n

T(n) ≤ 4(2T(n8\frac{n}{8}8n​)+n4\frac{n}{4}4n​) + 2n=8T(n8\frac{n}{8}8n​) +3n



T(n) ≤ nT(1) + (log2log_2log2​n) * n= O(nlog⁡\loglogn)

也就是说在最优情况下,快排算法的时间复杂度为O(nlog⁡\loglogn)

在最坏情况下,待排序的序列为正序或者逆序,每次划只得到一个比上次划分少一个记录的子序列,注意另一个是空。如果画出递归树,那么就是一棵斜树。此时需要执行n-1次递归调用,且第i次划分需要经过n-i次关键字的比较才能找到第i个记录,也就是基数的位置,因此比较次数为:

∑i=1n−1(n−i)=n−1+n−2+...+1=n(n−1)2\sum_{i=1}^{n-1}(n-i)=n-1+n-2+...+1= \frac{n(n-1)}{2}i=1∑n−1​(n−i)=n−1+n−2+...+1=2n(n−1)​

最终其时间复杂度为O(n2n^2n2)

平均情况下,设基数的关键字应该在第k的位置(1≤k≤n),那么

T(n)=1n∑k=1n(T(k−1)+T(n−k))+n=2n∑k=1nT(k)+nT(n)=\frac{1}{n}\sum_{k=1}^{n}(T(k-1) + T(n-k))+n= \frac{2}{n}\sum_{k=1}^{n}T(k)+nT(n)=n1​k=1∑n​(T(k−1)+T(n−k))+n=n2​k=1∑n​T(k)+n

有数学归纳法可证明,其数量级为O(nlog⁡\loglogn)

就空间复杂度来说,主要是递归造成的栈空间的使用,最好情况下递归树的深度为log2log_2log2​n,其空间复杂度也就为O(log⁡\loglogn),最坏情况下,需要进行n-1次递归调用,其空间复杂度为O(n),平均情况下,空间复杂度为O(log⁡\loglogn)。

由于关键字的比较和交换是跳跃式的进行,所以快速排序是一种不稳定的排序方法。

快速排序的优化

优化选取基数

采用三数取中法,即取三个关键字先进性排序,将中间数做为基数,一般是取左端,右端和中间三个数。

	//三分取中法
public int Partition_1(int[] elem, int low, int high) { int pivotkey; int m = low + (high - low) / 2;
if(elem[low] > elem[high]) {
swap(elem, low, high);
}
if(elem[m] > elem[high]) {
swap(elem, high, m);
}
if(elem[m] > elem[low]) {
swap(elem, low, m);
} pivotkey= elem[low]; while(low < high) { while((low < high) && (elem[high] >= pivotkey)) {
high--;
}
swap(elem, low, high); while((low < high) && (elem[low] <= pivotkey)) {
low++;
}
swap(elem, low, high);
}
return low;
}
优化不必要的交换
	//优化不必要的交换
public int Partition_2(int[] elem, int low, int high) { int pivotkey = elem[low];
elem[0] = pivotkey; while(low < high) { while((low < high) && (elem[high] >= pivotkey)) {
high--;
}
elem[low] = elem[high]; while((low < high) && (elem[low] <= pivotkey)) {
low++;
}
elem[high] = elem[low];
}
elem[low] = elem[0];
return low;
}

采用替换而不是交换的方式进行操作,在性能上得到部分提升。

优化小数组时的排序

数组非常小,其快速排序不如直接插入(直插是简单排序中性能最好的)。

public final int MAX_LENGTH_INSERT_SORT = 7;

	//优化小数组时的排序方案
public void QSort_1(int[] elem, int start, int end) { int pivot;
if((end - start) > MAX_LENGTH_INSERT_SORT) {
pivot = Partition(elem ,start, end); QSort(elem, start, pivot - 1);
QSort(elem, pivot + 1, end);
}
else insertSort(elem);
} //直接插入
public void insertSort(int[] elem) {
int i, j;
for (i = 2; i < elem.length; i++) {
if(elem[i] < elem[i - 1]) {
elem[0] = elem[i];
for (j = i - 1; elem[j] > elem[0]; j--) {
elem[j + 1] = elem[j];
}
elem[j + 1] = elem[0];
}
}
}
优化递归操作

在QSort函数在其尾部有两次递归操作,若待排序序列极端不平衡,递归深度趋近于n,每次递归调用都会浪费栈空间,因此能够减少递归,将会大大提升性能。

对QSort进行尾递归操作:

	//优化递归操作
public void QSort_2(int[] elem, int start, int end) { int pivot;
if((end - start) > MAX_LENGTH_INSERT_SORT) { while(start < end) {
pivot = Partition(elem ,start, end);
QSort(elem, start, pivot - 1);
start = pivot + 1;
}
}
else insertSort(elem);
}

因为第一次循环后start就没了作用,可将pivot+1赋给start,再循环后,来一次Partition(elem, low, high),其效果等同于“QSort(elem, pivot+1, end)”,结果相同,但采用迭代而不是递归可以缩减堆栈深度,从而提高性能。

快速排序的理解和实现(Java)的更多相关文章

  1. Atitit  深入理解命名空间namespace  java c# php js

    Atitit  深入理解命名空间namespace  java c# php js 1.1. Namespace还是package1 1.2. import同时解决了令人头疼的include1 1.3 ...

  2. 理解和解决Java并发修改异常ConcurrentModificationException(转载)

    原文地址:https://www.jianshu.com/p/f3f6b12330c1 理解和解决Java并发修改异常ConcurrentModificationException 不知读者在Java ...

  3. 深入理解和探究Java类加载机制

    深入理解和探究Java类加载机制---- 1.java.lang.ClassLoader类介绍 java.lang.ClassLoader类的基本职责就是根据一个指定的类的名称,找到或者生成其对应的字 ...

  4. 深入理解什么是Java泛型?泛型怎么使用?【纯转】

    本篇文章给大家带来的内容是介绍深入理解什么是Java泛型?泛型怎么使用?有一定的参考价值,有需要的朋友可以参考一下,希望对你们有所助. 一.什么是泛型 “泛型” 意味着编写的代码可以被不同类型的对象所 ...

  5. java中快速排序的理解以及实例

    所谓的快速排序的思想就是,首先把数组的第一个数拿出来做为一个key,在前后分别设置一个i,j做为标识,然后拿这个key对这个数组从后面往前遍历,及j--,直到找到第一个小于这个key的那个数,然后交换 ...

  6. [转载] 深入理解Android之Java虚拟机Dalvik

    本文转载自: http://blog.csdn.net/innost/article/details/50377905 一.背景 这个选题很大,但并不是一开始就有这么高大上的追求.最初之时,只是源于对 ...

  7. 如何理解和使用Java package包

    Java中的一个包就是一个类库单元,包内包含有一组类,它们在单一的名称空间之下被组织在了一起.这个名称空间就是包名.可以使用import关键字来导入一个包.例如使用import java.util.* ...

  8. 深入理解JVM(6)——Java内存模型和线程

    Java虚拟机规范中定义了Java内存模型(Java Memory Model,JMM)用来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果(“即Ja ...

  9. 理解JVM之Java内存区域

    Java虚拟机运行时数据区分为以下几个部分: 方法区.虚拟机栈.本地方法栈.堆.程序计数器.如下图所示: 一.程序计数器 程序计数器可看作当前线程所执行的字节码行号指示器,字节码解释器工作时就是通过改 ...

随机推荐

  1. 首页焦点图myFocus插件

    首页焦点图myFocus插件   myFocus特性 小巧却高效强大 myFocus v2.0.min版只有9.89KB,却能使你的网页上可以运行超过30款风格各异的焦点图,在互联网独一无二哦~ 极其 ...

  2. Ehcache整合spring配置

    为了提高系统的运行效率,引入缓存机制,减少数据库访问和磁盘IO.下面说明一下ehcache和spring整合配置. 1.   需要的jar包 slf4j-api-1.6.1.jar ehcache-c ...

  3. 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)

    传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...

  4. 2018.09.08 poj1185 炮兵阵地(状压dp)

    传送门 状压dp经典题. 我们把每一行的状态压成01串. 预处理出每一行可能出现的状态,然后转移每个被压缩的状态的1的个数就行了. 注意当前行转移要考虑前两行的状态. 还要注意只有一行的情况. 代码: ...

  5. org.springframework.beans.factory.NoSuchBeanDefinitionException: No bean named 'testService' is defined

    org.springframework.beans.factory.NoSuchBeanDefinitionException: No bean named 'testService' is defi ...

  6. AngularJS标准Web业务流程开发框架—1.AngularJS模块以及启动分析

    前言: AngularJS中提到模块是自定义的模块标准,提到这不得不说AngularJS是框架中的老大哥,思想相当的前卫..在这框架满天横行的时代,AngularJS有些思想至今未被超越,当然仁者见仁 ...

  7. php读取用友u8客户档案

    include('../common/conn.php'); $list=[]; $sql="SELECT a.cCusCode,a.cCusName,b.cCCName,a.cCusDep ...

  8. Python学习-23.Python中的函数——isinstance

    在Python中可以使用isinstance函数来判断某个值或变量是否为某个类型. 例子: print(isinstance(1,int)) print(isinstance(1,float)) pr ...

  9. Autofac创建实例的方法总结[转]

    1.InstancePerDependency 对每一个依赖或每一次调用创建一个新的唯一的实例.这也是默认的创建实例的方式. 官方文档解释:Configure the component so tha ...

  10. LeetCode146:LRU Cache

    题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the ...