题目描述

给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加、区间开根、区间求和。

$n,m,a_i\le 100000$ 。


题解

线段树+均摊分析

对于原来的两个数 $a$ 和 $b$ ( $a>b$ ) ,开根后变成 $\sqrt a$ 和 $\sqrt b$ ,它们的差从 $a-b$ 变成了 $\sqrt a-\sqrt b$ 。

又有 $(\sqrt a-\sqrt b)(\sqrt a+\sqrt b)=a-b$ ,因此开方后的差小于原来差的开方。

而当区间差为 $0$ 或 $a=x^2,b=x^2-1$ 的 $1$ 时,区间开根就变成了区间减。

因此一个区间开根 $\log\log(Max-Min)$ 次后就不需要暴力开根,直接区间减即可。

定义线段树节点势能为 $\log\log(Max-Min)$ ,那么每次对 $[l,r]$ 开根就是将所有 $l\le x,y\le r$ ,且势能不为 $0$ 的节点 $[x,y]$ 的势能减 $1$ ,代价为势能减少总量。

分析区间加操作:只会修改到经过的节点的势能,影响 $\log$ 个节点,将这些点的势能恢复为 $\log\log(Max-Min)$ 。

因此总的时间复杂度就是总势能量 $O((n+m\log n)\log\log a)$ 。

#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
typedef long long ll;
ll sum[N << 2] , mx[N << 2] , mn[N << 2] , tag[N << 2];
inline void add(ll v , int l , int r , int x)
{
sum[x] += v * (r - l + 1) , mx[x] += v , mn[x] += v , tag[x] += v;
}
inline void pushup(int x)
{
sum[x] = sum[x << 1] + sum[x << 1 | 1];
mx[x] = max(mx[x << 1] , mx[x << 1 | 1]);
mn[x] = min(mn[x << 1] , mn[x << 1 | 1]);
}
inline void pushdown(int l , int r , int x)
{
if(tag[x])
{
int mid = (l + r) >> 1;
add(tag[x] , lson) , add(tag[x] , rson);
tag[x] = 0;
}
}
inline void build(int l , int r , int x)
{
if(l == r)
{
scanf("%lld" , &sum[x]) , mx[x] = mn[x] = sum[x];
return;
}
int mid = (l + r) >> 1;
build(lson) , build(rson);
pushup(x);
}
inline void update(int b , int e , ll a , int l , int r , int x)
{
if(b <= l && r <= e)
{
add(a , l , r , x);
return;
}
pushdown(l , r , x);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , lson);
if(e > mid) update(b , e , a , rson);
pushup(x);
}
inline void change(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e && mx[x] - (ll)sqrt(mx[x]) == mn[x] - (ll)sqrt(mn[x]))
{
add((ll)sqrt(mx[x]) - mx[x] , l , r , x);
return;
}
pushdown(l , r , x);
int mid = (l + r) >> 1;
if(b <= mid) change(b , e , lson);
if(e > mid) change(b , e , rson);
pushup(x);
}
inline ll query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e) return sum[x];
pushdown(l , r , x);
int mid = (l + r) >> 1;
ll ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
int main()
{
int n , m , opt , x , y;
ll z;
scanf("%d%d" , &n , &m);
build(1 , n , 1);
while(m -- )
{
scanf("%d%d%d" , &opt , &x , &y);
if(opt == 1) scanf("%lld" , &z) , update(x , y , z , 1 , n , 1);
else if(opt == 2) change(x , y , 1 , n , 1);
else printf("%lld\n" , query(x , y , 1 , n , 1));
}
return 0;
}

【uoj#228】基础数据结构练习题 线段树+均摊分析的更多相关文章

  1. UOJ #228. 基础数据结构练习题 线段树 + 均摊分析 + 神题

    题目链接 一个数被开方 #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",st ...

  2. uoj #228. 基础数据结构练习题 线段树

    #228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...

  3. uoj#228. 基础数据结构练习题(线段树区间开方)

    题目链接:http://uoj.ac/problem/228 代码:(先开个坑在这个地方) #include<bits/stdc++.h> using namespace std; ; l ...

  4. 【loj6029】「雅礼集训 2017 Day1」市场 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有四种:区间加.区间下取整除.区间求最小值.区间求和. $n\le 100000$ ,每次加的数在 $[-10^4,10^4]$ 之 ...

  5. 【线段树】uoj#228. 基础数据结构练习题

    get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...

  6. 【UOJ#228】基础数据结构练习题 线段树

    #228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...

  7. uoj#228 基础数据结构练习题

    题面:http://uoj.ac/problem/228 正解:线段树. 我们可以发现,开根号时一个区间中的数总是趋近相等.判断一个区间的数是否相等,只要判断最大值和最小值是否相等就行了.如果这个区间 ...

  8. bzoj4127 Abs 树链剖分+线段树+均摊分析

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4127 题解 首先区间绝对值和可以转化为 \(2\) 倍的区间正数和 \(-\) 区间和.于是问 ...

  9. uoj#228. 基础数据结构练习题(线段树)

    传送门 只有区间加区间开方我都会--然而加在一起我就gg了-- 然后这题的做法就是对于区间加直接打标记,对于区间开方,如果这个区间的最大值等于最小值就直接区间覆盖(据ljh_2000大佬说这个区间覆盖 ...

随机推荐

  1. C#简单的四位纯数字验证码

    验证码练手,整型.四位验证码 大体意思就是:四位纯数字验证,只要验证不成功就无限验证 刚开始在纠结怎么让整个过程循环起来,什么循环放到最外层,其实就是一个循环,看来自己的循环练习的还是不够多,不够灵活 ...

  2. SecureCRT 用法总结

    SecureCRT 用法总结   1.下载与破解方法: Mac:https://www.jianshu.com/p/9427f12b1fdb Window:https://drive.google.c ...

  3. SVN For Mac: Cornerstone.app破解版免费下载

    Cornerstone.app下载地址 链接:https://pan.baidu.com/s/1kwQ65SBgfWXQur8Zdzkyyw  密码:rqe7 Cornerstone303 MAS.a ...

  4. hdfs命令大全

    hdfs常用命令: 第一部分:hdfs文件系统命令 第一类:文件路径增删改查系列: hdfs dfs -mkdir dir  创建文件夹 hdfs dfs -rmr dir  删除文件夹dir hdf ...

  5. 【Unity Shader】Shader基础

    目录 Chapter3 Unity Shader 基础 Chapter3 Unity Shader 基础 概述 在Unity需要材质(Material)与Unity Shader配合使用来达到满意的效 ...

  6. 【文章存档】Azure Web 应用如何修改 IIS 配置

    链接 https://docs.azure.cn/zh-cn/articles/azure-operations-guide/app-service-web/aog-app-service-web-h ...

  7. Streamr助你掌控自己的数据(3)——教你在Streamr市场上发布数据

    博客说明 所有刊发内容均可转载但是需要注明出处. 教你在Streamr市场上发布数据 本系列文档主要介绍怎么通过Streamr管理自己的DATA,整个系列包括三篇教程文档,分别是:教你5分钟上传数据至 ...

  8. SDWebImage 错误汇总

    1.  [UIImageView sd_setImageWithURL:placeholderImage:]: unrecognized selector sent to instance 打包静态库 ...

  9. mkfs命令详解

    mkfs命令-->make filesystem的缩写:用来在特定的分区建立Linux文件系统     [命令作用] 该命令用来在特定的分区创建linux文件系统,常见的文件系统有ext2,ex ...

  10. 卸载CentOS7自带的OpenJDK

    http://blog.csdn.net/xiegh2014/article/details/52343438