【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)
1415: [Noi2005]聪聪和可可
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1640 Solved: 962Description
Input
数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数。 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。Output
输出1个实数,四舍五入保留三位小数,表示平均多少个时间单位后聪聪会把可可吃掉。Sample Input
【输入样例1】
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9Sample Output
【输出样例1】
1.500
【输出样例2】
2.167HINT
【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。Source
【分析】
先n次bfs求出聪聪会走哪里。
然后直接记忆化搜索求期望就好了。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define Maxm 1010 int mymin(int x,int y) {return x<y?x:y;} struct node
{
int x,y,next;
}t[Maxm*];
int first[Maxn],len;
int d[Maxn]; void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
d[x]++;
} int n,m;
int dis[Maxn][Maxn],pre[Maxn],wk[Maxn][Maxn];
queue<int > q;
void bfs(int nw)
{
for(int i=;i<=n;i++) dis[nw][i]=-;
while(!q.empty()) q.pop();
dis[nw][nw]=;q.push(nw);
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=first[x];i;i=t[i].next)
{
int y=t[i].y;
if(dis[nw][y]!=-&&dis[nw][x]+==dis[nw][y]) pre[y]=mymin(pre[y],x);
else if(dis[nw][y]==-)
{
dis[nw][y]=dis[nw][x]+;
pre[y]=x;
q.push(y);
}
}
}
for(int i=;i<=n;i++) wk[i][nw]=pre[i];
} double f[Maxn][Maxn];
bool vis[Maxn][Maxn]; double ffind(int st,int ed)
{
if(st==ed) return f[st][ed]=;
if(dis[st][ed]<=) return f[st][ed]=1.0;
if(vis[st][ed]) return f[st][ed];
f[st][ed]=;vis[st][ed]=;
int to=wk[wk[st][ed]][ed];
for(int i=first[ed];i;i=t[i].next)
{
int y=t[i].y;
f[st][ed]+=(ffind(to,y)+)*1.0/(d[ed]+);
}
f[st][ed]+=(ffind(to,ed)+)*1.0/(d[ed]+);
return f[st][ed];
} int main()
{
int st,ed;
scanf("%d%d%d%d",&n,&m,&st,&ed);
len=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
ins(x,y);ins(y,x);
}
for(int i=;i<=n;i++) bfs(i);
memset(vis,,sizeof(vis));
ffind(st,ed);
printf("%.3lf\n",f[st][ed]);
return ;
}
2017-04-22 08:51:55
【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)的更多相关文章
- BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- 1415. [NOI2005]聪聪和可可【记忆化搜索DP】
Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点 ...
- BZOJ 1415: [Noi2005]聪聪和可可(记忆化搜索+期望)
传送门 解题思路 还是比较简答的一道题.首先\(bfs\)把每个点到其他点的最短路求出来,然后再记忆化搜索.记搜的时候猫的走法是确定的,搜一下老鼠走法就行了. 代码 #include<iostr ...
- BZOJ 1638 [Usaco2007 Mar]Cow Traffic 奶牛交通:记忆化搜索【图中边的经过次数】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1638 题意: 给你一个有向图,n个点,m条有向边. 对于所有从入度为0的点到n的路径,找出 ...
- bzoj 1638: [Usaco2007 Mar]Cow Traffic 奶牛交通【记忆化搜索】
震惊!记忆化搜索忘记返回map值调了半小时! 边(u,v)的经过次数是:能到u的牛数*v到n的方案数.正反两次连边,dfs两次即可 #include<iostream> #include& ...
- BZOJ 4032: [HEOI2015]最短不公共子串(后缀自动机+记忆化搜索)
传送门 解题思路 首先需要预处理两个串\(nxt(i)(j)\)表示i位置之后最近的\(j\). 第一问直接对\(b\)建后缀自动机,枚举\(a\)的起点暴力匹配. 第二问枚举\(a\)的起点,\(b ...
- [BZOJ 1055] [HAOI2008] 玩具取名 【记忆化搜索】
题目链接:BZOJ - 1055 题目分析 这种类似区间 DP 的记忆化搜索都是很相近的,比如字符串压缩和字符串扩展都差不多. 都是将现在 Solve 的区间分成子区间,再求解子区间. 这道题 Sol ...
- 【BZOJ】1415: [Noi2005]聪聪和可可【期望】【最短路】【记忆化搜索】
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2335 Solved: 1373[Submit][Stat ...
- BZOJ 1415 【NOI2005】 聪聪和可可
题目链接:聪聪和可可 一道水题--开始还看错题了,以为边带权--强行\(O(n^3)\)预处理-- 首先,我们显然可以预处理出一个数组\(p[u][v]\)表示可可在点\(u\),聪聪在点\(v\)的 ...
随机推荐
- [SDOI2010]外星千足虫 题解 高斯消元+bitset简介
高斯消元 + bitset 简介: 高斯消元其实就是以加减消元为核心求唯一解.这道题还是比较裸的,可以快速判断出来.我们将每一只虫子看作一个未知数,这样根据它给出的 m 组方程我们可以高斯消元得出每一 ...
- 文件操作fstream
c++文件操作详解 2009-04-16 20:46:35| 分类: C/C++|举报|字号 订阅 C++ 通过以下几个类支持文件的输入输出: ofstream: 写操作(输出)的文件类 (由ost ...
- 【多视图几何】TUM 课程 第6章 多视图重建
课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课 ...
- Spring4笔记9--Spring的事务管理(AOP应用的例子)
Spring的事务管理: 事务原本是数据库中的概念,在 Dao 层.但一般情况下,需要将事务提升到业务层,即 Service 层.这样做是为了能够使用事务的特性来管理具体的业务. 在 Spring ...
- VMware 增加硬盘ubuntu
http://blog.csdn.net/Timsley/article/details/50742755
- 【技巧总结】Penetration Test Engineer[1]-Basic
1.渗透测试基础 1.1.渗透测试分类 黑盒测试:从远程网络位置来评估目标网络基础设施,没有任何相关信息 白盒测试:内部发起,了解到关于目标环境的所有内部与底层知识 灰盒测试:结合两者优势,根据对目标 ...
- flask插件系列之flask_uploads上传文件
前言 flask可以实现上传文件和下载文件的基本功能,但如果想要健壮的功能,使用flask_uploads插件是十分方便的. 安装 pip install flask_uploads 基本使用 # e ...
- aarch64_p1
PEGTL-devel-1.3.1-2.fc26.aarch64.rpm 2017-02-14 08:00 63K fedora Mirroring Project PackageKit-1.1.6- ...
- Memcache 内存分配策略和性能(使用)状态检查【转】
前言: 一直在使用Memcache,但是对其内部的问题,如它内存是怎么样被使用的,使用一段时间后想看看一些状态怎么样?一直都不清楚,查了又忘记,现在整理出该篇文章,方便自己查阅.本文不涉及安装.操作. ...
- 【小程序开发】上拉加载更多demo
wxml: <scroll-view class='swiper-scroll' scroll-y="{{true}}" bindscrolltolower="lo ...

