【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】
P2473 [SCOI2008]奖励关
题目背景
08四川NOI省选
题目描述
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。
获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。
假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
输入输出格式
输入格式:
第一行为两个正整数k 和n,即宝物的数量和种类。以下n行分别描述一种
宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各
宝物编号为1到n),以0结尾。
输出格式:
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
输入输出样例
说明
1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数。
Solution
果然老李给的是期望专题....
这道题状态比较好想,数据暗示状压。定义$dp[i][j]$表示当前到了第$i$轮,状态为$j$时获得的期望值。从前到后不好转移,有些状态无法到达。
所以考虑倒推,从后面能到达的状态转移回来,最后答案就是$dp[1][0]$。
Code
- #include<bits/stdc++.h>
- using namespace std;
- int n, k, w[], s[( << ) + ];
- double dp[][( << ) + ];
- int main() {
- scanf("%d%d", &k, &n);
- for(int i = ; i <= n; i ++) {
- scanf("%d", &w[i]);
- int a;
- while(scanf("%d", &a) == ) {
- if(a == ) break;
- s[i] |= ( << (a - ));
- }
- }
- for(int i = k; i >= ; i --)
- for(int j = ; j < ( << n); j ++) {
- for(int p = ; p <= n; p ++)
- if((j & s[p]) == s[p])
- dp[i][j] += max(dp[i + ][j], dp[i + ][j | ( << (p - ))] + 1.0 * w[p]);
- else dp[i][j] += dp[i + ][j];
- dp[i][j] /= n;
- }
- printf("%.6lf", dp[][]);
- return ;
- }
【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】的更多相关文章
- 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )
题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...
- BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)
题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...
- 洛谷2473(SCOI2008)奖励关
题目:https://www.luogu.org/problemnew/show/P2473 因为可不可选此物与之前选过什么物品有关,所以状态可以记录成前面已经选过什么物品. 因为选不选此物与它带来的 ...
- 洛谷 P2473 [SCOI2008]奖励关 解题报告
P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝 ...
- bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2989 Solved: 1557[Submit][Statu ...
- 洛谷P2473 [SCOI2008]奖励关(期望+状压)
传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...
- 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp
题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)
题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
随机推荐
- 【Nginx】 Nginx实现端口转发
什么是端口转发 当我们在服务器上搭建一个图书以及一个电影的应用,其中图书应用启动了 8001 端口,电影应用启动了 8002 端口.此时如果我们可以通过 localhost:8001 //图书 loc ...
- innobackupex 相关语法讲解【转】
innobackupex 相关语法讲解 连接服务器 The database user used to connect to the server and its password are speci ...
- 【转】WCF光芒下的Web Service
WCF光芒下的Web Service 学习.NET的开发人员,在WCF的光芒照耀下,Web Service 似乎快要被人遗忘了.因为身边做技术的人一开口就是WCF多么的牛逼!废话不多,本人很久不写博客 ...
- gitHub 迁移到gitlab上
GitHub 迁移到 GitLab 上 第一步在github上生成 token 地址 https://blog.csdn.net/u014175572/article/details/55510825 ...
- Bootstrap FileInput 多图上传插件 文档属性说明
Bootstrap FileInput 多图上传插件 原文链接:http://blog.csdn.net/misterwho/article/details/72886248?utm_source ...
- jenkins打包安卓项目
jenkins打包安卓项目和其它项目差不了太多. 1.构建选择 gradle(如果不用gradle自己写脚本编译也可) 2.jenkins用户需要安装JDK.SDK,jenkins会自动下载gradl ...
- YUI Compressor 压缩 JavaScript 原理-《转载》
YUI Compressor 压缩 JavaScript 的内容包括: 移除注释 移除额外的空格 细微优化 标识符替换(Identifier Replacement) YUI Compressor包括 ...
- [java笔记]常用的设计模式
1.单例设计模式 单例设计模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点. 1)构造方法私有化 2)声明一个本类对象 3)给外部提供一个静态方法获取对象实例 例如: class Singl ...
- Python3中的yield from语法
Python3中的yield from语法 by Kay Zheng Tags: python, 协程, generator 30 March 2014 2016-2-23 更新 這篇文章是兩年前寫的 ...
- sql server2012 企业版 百度云下载
链接: https://pan.baidu.com/s/1j7a6RWwpvSzG-sF7Dnexfw 提取码: 关注公众号[GitHubCN]回复获取