BZOJ.2916.[POI1997]Monochromatic Triangles(三元环)
\(Description\)
n个点的完全图,其中有m条边用红边相连,其余边为蓝色。求其中三边同色的三角形个数。
\(Solution\)
直接求同色 除了n^3 不会。。
三角形总数是C(n,3),考虑求不同色三角形个数。如果一个点连着两条不同颜色的边,那么这一定是个不同色三角形。
如果点i连出的红边数为\(x\),那么连出蓝边\(n-1-x\),形成的不同色三角形个数就是\(x*(n-1-x)\).
因为同一个不同色三角形会被枚举两次,so \(Ans=C(n,3)-\frac{1}{2}\sum_{i=1}^nx[i]*(n-1-x[i])\)
如图,这个三角形在计算A,B时都算了一次。
感觉和这道坑着的题思路比较像 http://codeforces.com/contest/434/problem/E
//1120kb 40ms
#include <cstdio>
#include <cctype>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1005;
int n,m,red[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
n=read(), m=read();
while(m--) ++red[read()], ++red[read()];
long long ans=0;
for(int i=1; i<=n; ++i) ans+=1ll*red[i]*(n-1-red[i]);
printf("%lld\n",1ll*n*(n-1)*(n-2)/6-(ans>>1));
return 0;
}
BZOJ.2916.[POI1997]Monochromatic Triangles(三元环)的更多相关文章
- BZOJ 2916: [Poi1997]Monochromatic Triangles [计数]
题意:空间中有n个点,任意3个点不共线.每两个点用红线或者蓝线连接,如果一个三角形的三边颜色相同,那么称为同色三角形.给你一组数据,计算同色三角形的总数. 考虑补集,异色三角形 每个点的边红色和蓝色两 ...
- 【BZOJ 2916】 2916: [Poi1997]Monochromatic Triangles (容斥)
2916: [Poi1997]Monochromatic Triangles Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 310 Solved: 1 ...
- bzoj2916: [Poi1997]Monochromatic Triangles 思路
bzoj2916: [Poi1997]Monochromatic Triangles 链接 bzoj 思路 总方案\(C_{n}^{3}-异色三角形\) 异色三角形有个特点. 会出现两个点有两条不同色 ...
- BZOJ.5407.girls(容斥 三元环)
题目链接 CF 原题 \(Description\) 有n个点,其中有m条边连接两个点.每一个没有连边的三元组\((i,j,k)(i<j<k)\)对答案的贡献为\(A*i+B*j+C*k\ ...
- BZOJ 3498 PA2009 Cakes(三元环处理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3498 [题目大意] N个点m条边,每个点有一个点权a. 对于任意一个三元环(j,j,k ...
- 【bzoj 2916】[Poi1997]Monochromatic Triangles
题目描述 空间中有n个点,任意3个点不共线.每两个点用红线或者蓝线连接,如果一个三角形的三边颜色相同,那么称为同色三角形.给你一组数据,计算同色三角形的总数. 输入 第 ...
- 【组合数学】Bzoj2916 [Poi1997]Monochromatic Triangles
Description 空间中有n个点,任意3个点不共线.每两个点用红线或者蓝线连接,如果一个三角形的三边颜色相同,那么称为同色三角形.给你一组数据,告诉你哪些点间有一条红线,计算同色三角形的总数. ...
- BZOJ2916 [Poi1997]Monochromatic Triangles 数论
答案等于总三角形数-不合法数 一个不合法三角形一定存在两个顶点,在这个三角形中这个顶点的角的两边不同色 #include<cstring> #include<cmath> #i ...
- BZOJ 3498: PA2009 Cakes 一类经典的三元环计数问题
首先引入一个最常见的经典三元环问题. #include <bits/stdc++.h> using namespace std; const int maxn = 100005; vect ...
随机推荐
- 【译】第十篇 Replication:故障排除
本篇文章是SQL Server Replication系列的第十篇,详细内容请参考原文. 复制故障排除是一项艰巨的任务.在任何复制设置中,都涉及到很多移动部件,而可用的工具并不总是很容易识别问题.Th ...
- $("节点名").html("字符串")和$("节点名").text("字符串")区别
1. 经过html方法: $(".js_info").html("~!`@#$%^& ";'<>\=/-!·#¥%…&*()—+|` ...
- 解决Maven并行编译中出现打包错误问题的思路
解决Maven并行编译中出现打包错误问题的思路 并行构建 Maven 3.x 提供了并行编译的能力,通过执行下列命令就可以利用构建服务器的多线程/多核性能提升构建速度: mvn -T 4 clean ...
- Spring笔记13--SSH--全注解开发
SSH全注解开发: (1) 在Action类中添加注解,实现Struts2的注解开发(@NameSpace.@ParentPackage.@Action...) package com.tongji. ...
- MODULE_DEVICE_TABLE (二)【转】
转自:http://blog.csdn.net/uruita/article/details/7263290 1. MODULE_DEVICE_TABLE (usb, skel_table);该宏生成 ...
- a标签、img图片、iframe、表单元素、div
1.<a href="http://www.baidu.com" target=''_blank">百度</a> 超链接标签 2.<img ...
- mysql高可用架构 -> MHA配置binlog-server-06
前期准备 1.准备一台新的mysql实例(db03),GTID必须开启. 2.将来binlog接收目录,不能和主库binlog目录一样 停止mha masterha_stop --conf=/etc/ ...
- 1->小规模集群架构规划
"配置无人值守批量安装系统(Cobbler)" "搭建PPTP VPN/ NTP/Firewalld内部共享上网 " "搭建跳板机服务jumpserv ...
- go语言 documentation
Documentation文档 The Go programming language is an open source project to make programmers more pro ...
- 洛谷P2015二叉苹果树
传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...