Mycat分片规则详解
1、分片枚举
通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下:
<tableRule name="sharding-by-intfile">
<rule>
<columns>user_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">0</property>
<property name="defaultNode">0</property>
</function>
配置说明
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
mapFile | 标识配置文件名称 |
type | 默认值为 0,0 表示 Integer,非零表示 String |
defaultNode | 默认节点:小于 0 表示不设置默认节点,大于等于 0 设置默认节点 |
partition-hash-int.txt 配置:
10000=0
10010=1
DEFAULT_NODE=1 //默认节点
注意
默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点
如果不配置默认节点(defaultNode 值小于 0 表示不配置默认节点),碰到不识别的枚举值就会报错
like this:can’t find datanode for sharding column:column_name val:ffffffff
2、固定分片 hash 算法
本条规则类似于十进制的求模运算,区别在于是二进制的操作,是取 id 的二进制低 10 位,即 id 二进制 &1111111111。
此算法的优点在于如果按照 10 进制取模运算,在连续插入 1-10 时候 1-10 会被分到 1-10 个分片,增大了插入的事务控制难度,而此算法根据二进制则可能会分到连续的分片,减少插入事务事务控制难度。
<tableRule name="rule1">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1</property>
<property name="partitionLength">256,512</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
partitionCount | 分片个数列表 |
partitionLength | 分片范围列表 |
分区长度:
默认为最大 2^n=1024 ,即最大支持 1024 分区。
约束:
count,length 两个数组的长度必须是一致的;
1024 = sum((count[i]*length[i]))
count 和 length 两个向量的点积恒等于 1024。
如果需要平均分配设置:平均分为 4 分片,partitionCount*partitionLength=1024。
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">4</property>
<property name="partitionLength">256</property>
</function>
3、范围约定
此分片适用于,提前规划好分片字段某个范围属于哪个分片。
<tableRule name="auto-sharding-long">
<rule>
<columns>user_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
mapFile | 标识配置文件名称 |
defaultNode | 超过范围后的默认节点 |
所有的节点配置都是从 0 开始,及 0 代表节点 1,此配置非常简单,即预先制定可能的 id 范围到某个分片:
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
或
0-10000000=0
10000001-20000000=1
4、取模
此规则为对分片字段求摸运算。
<tableRule name="mod-long">
<rule>
<columns>user_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">3</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
count | 分片数量 |
根据 id 进行十进制求模预算,相比固定分片 hash,此种在批量插入时可能存在批量插入单事务插入多数据分片,增大事务一致性难度。
5、按日期(天)分片
此规则为按天分片。
<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-date</algorithm>
</rule>
</tableRule>
<function name="sharding-by-date" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
<property name="sEndDate">2014-01-02</property>
<property name="sPartionDay">10</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
dateForma | 日期格式 |
sBeginDate | 开始日期 |
sEndDate | 结束日期 |
sPartionDay | 分区天数,即默认从开始日期算起,分隔 10 天一个分区 |
如果配置了 sEndDate 则代表数据达到了这个日期的分片后循环从开始分片插入。
注意
在查询时,如果需要查询时间段应该使用between...and,使用>=或者<=会查询所有分片。
6、取模范围约束
此种规则是取模运算与范围约束的结合,主要为了后续数据迁移做准备,即可以自主决定取模后数据的节点分布。
<tableRule name="sharding-by-pattern">
<rule>TopESA - Win Cpp
<columns>user_id</columns>
<algorithm>sharding-by-pattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPattern">
<property name="patternValue">256</property>
<property name="defaultNode">2</property>
<property name="mapFile">partition-pattern.txt</property>
</function>
partition-pattern.txt
# id partition range start-end ,data node index
###### first host configuration
1-32=0
33-64=1
65-96=2
97-128=3
######## second host configuration
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
patternValue | 求模基数 |
defaoultNod | 默认节点 |
mapFile | 配置文件路径 |
配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推
如果 id 非数字,则会分配在 defaoultNode 默认节点。
7、截取数字做 hash 求模范围约束
此种规则类似于取模范围约束,此规则支持数据符号字母取模。
<tableRule name="sharding-by-prefixpattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-prefixpattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPrefixPattern">
<property name="patternValue">256</property>
<property name="prefixLength">5</property>
<property name="mapFile">partition-pattern.txt</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
patternValue | 求模基数 |
prefixLength | ASCII 截取的位数 |
mapFile | 配置文件路径 |
partition-pattern.txt
# range start-end ,data node index
# ASCII
# 8-57=0-9 阿拉伯数字
# 64、65-90=@、A-Z
# 97-122=a-z
###### first host configuration
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7
配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推。
此种方式类似取模范围约束,只不过采取的是将列种获取前 prefixLength 位列所有 ASCII 码的和进行求模。
sum%patternValue ,获取的值,在范围内的分片数
8、应用指定
此规则是在运行阶段有应用自主决定路由到那个分片。
<tableRule name="sharding-by-substring">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-substring</algorithm>
</rule>
</tableRule>
<function name="sharding-by-substring" class="io.mycat.route.function.PartitionDirectBySubString">
<property name="startIndex">0</property><!-- zero-based -->
<property name="size">2</property>
<property name="partitionCount">8</property>
<property name="defaultPartition">0</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
partitionCount | 分区数 |
defaultPartition | 默认分区 |
此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。
例如:id=05-100000002,在此配置中代表根据 id 中从 startIndex=0,开始,截取 siz=2 位数字即 05,05 就是获取的分区,如果没传默认分配到 defaultPartition。
9、截取数字 hash 解析
此规则是截取字符串中的 int 数值 hash 分片。
<tableRule name="sharding-by-stringhash">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-stringhash</algorithm>
</rule>
</tableRule>
<function name="sharding-by-stringhash" class="io.mycat.route.function.PartitionByString">
<property name="partitionLength">512</property><!-- zero-based -->
<property name="partitionCount">2</property>
<property name="hashSlice">0:2</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
partitionLength | 字符串hash求模基数 |
partitionCount | 分区数 |
hashSlice | 预算位,即根据子字符串中 int 值 hash 运算。 0 means str.length(), -1 means str.length()-1 |
注意
hashSlice可以理解为substring(start,end),start为0则只表示0;
例1:值“45abc”,hash预算位0:2 ,取其中45进行计算
例2:值“aaaabbb2345”,hash预算位-4:0 ,取其中2345进行计算
10、一致性 hash
一致性 hash 预算有效解决了分布式数据的扩容问题。
<tableRule name="sharding-by-murmur">
<rule>
<columns>user_id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<!-- 默认是 0 -->
<property name="seed">0</property>
<!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
<property name="count">2</property>
<!-- 一个实际的数据库节点被映射为这么多虚拟 节点,默认是 160 倍,也就是虚拟节点数是物理节点数的 160 倍 -->
<property name="virtualBucketTimes">160</property>
<!-- 节点的权重,没有指定权重的节点默认是 1。以 properties 文件的格式填写,以从 0 开始到 count-1 的整数值也就是节点索引为 key,以节点权重值为值。所有权重值必须是正整数,否则以 1 代替 -->
<property name="weightMapFile">weightMapFile</property>
<!-- 用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的 murmur hash 值与物理节 点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
<property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
</function>
11、按单月小时拆分
此规则是单月内按照小时拆分,最小粒度是小时,可以一天最多 24 个分片,最少 1 个分片,一个月完后下月从头开始循环。每个月月尾,需要手工清理数据。
<tableRule name="sharding-by-hour">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hour</algorithm>
</rule>
</tableRule>
<function name="sharding-by-hour" class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">24</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段(字符串类型yyyyMMddHH) |
algorithm | 分片函数 |
splitOneDay | 一天切分的分片数 |
注意
分片字段必须为字符串格式,否则分片不成功,默认存到第一个分片里面;
保存的时间格式必须为‘yyyymmddHH’格式,不能多也不能少字符,否则分片不成功,默认存到第一个分片里面;
12、范围求模分片
先进行范围分片计算出分片组,组内再求模。
优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题。
综合了范围分片和求模分片的优点,分片组内使用求模可以保证组内数据比较均匀,分片组之间是范围分片,可以兼顾范围查询。
最好事先规划好分片的数量,数据扩容时按分片组扩容,则原有分片组的数据不需要迁移。由于分片组内数据比较均匀,所以分片组内可以避免热点数据问题。
<tableRule name="auto-sharding-rang-mod">
<rule>
<columns>id</columns>
<algorithm>rang-mod</algorithm>
</rule>
</tableRule>
<function name="rang-mod" class="io.mycat.route.function.PartitionByRangeMod">
<property name="mapFile">partition-range-mod.txt</property>
<property name="defaultNode">21</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
mapFile | 配置文件路径 |
defaultNode | 超过范围后的默认节点顺序号,节点从 0 开始。 |
partition-range-mod.txt
# 以下配置一个范围代表一个分片组,=号后面的数字代表该分片组所拥有的分片的数量。
# range start-end ,data node group size
0-200M=5 //代表有 5 个分片节点
200M1-400M=1
400M1-600M=4
600M1-800M=4
800M1-1000M=6
注意
如上0-200M存入到5个分片中,开始范围-结束范围=该分片组有多少个分片。如果超过配置范围需要增加分片组。
13、日期范围HASH分片
思想与范围求模一致,当由于日期在取模会有数据集中问题,所以改成 hash 方法。
先根据日期分组,再根据时间 hash 使得短期内数据分布的更均匀。
优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题。要求日期格式尽量精确些,不然达不到局部均匀的目的
<tableRule name="range-date-hash">
<rule>
<columns>col_date</columns>
<algorithm>range-date-hash</algorithm>
</rule>
</tableRule>
<function name="range-date-hash" class="io.mycat.route.function.PartitionByRangeDateHash">
<property name="sBeginDate">2014-01-01 00:00:00</property>
<property name="sPartionDay">365</property>
<property name="dateFormat">yyyy-MM-dd HH:mm:ss</property>
<property name="groupPartionSize">3</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
sBeginDate | 开始日期 |
sPartionDay | 多少天一个分片 |
dateFormat | 日期格式 |
groupPartionSize | 分片组的大小 |
注意
从sBeginDate时间开始计算,每sPartionDay天的数据为一个分片组,每个分片组可以分布在groupPartionSize个分片上面。上面的例子最多可以有三天进行分片,如果超出则会抛出以下异常。
Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Can't find a valid data node for specified node index :ALAN_TEST -> RANGE_DATE -> 2019-01-11 12:00:00 -> Index : 4
The error may involve com.mycat.test.model.AlanTest.insert-Inline
The error occurred while setting parameters
14、冷热数据分片
根据日期查询日志数据 冷热数据分布 ,最近 n 个月的到实时交易库查询,超过 n 个月的按照 m 天分片。
<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hotdate</algorithm>
</rule>
</tableRule>
<function name="sharding-by-hotdate" class="io.mycat.route.function.PartitionByHotDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sLastDay">10</property>
<property name="sPartionDay">30</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
dateFormat | 日期格式 |
sLastDay | 热数据的时间 |
sPartionDay | 冷数据的分片天数(按照天数分片) |
注意
冷数据按照这个范围进行分片,例如上面的规则配置,今天是2019年1月21日,往前推10天为2019年1月12日,则2019年1月12日之前的数据为冷数据,该批冷数据的分片规则为30天一个分片,即2018-12-12至2019-01-11的数据放入第1个分片,2018-11-12至2018-12-11的数据放入第2个分片...以此类推,如果数据库分区不够,则在保存的时候会抛出以下异常
Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Can't find a valid data node for specified node index :ALAN_TEST -> CREATE_DATE -> 2018-11-09 12:00:00 -> Index : 3
15、自然月分片
按月份列分区 ,每个自然月一个分片,格式 between 操作解析的范例。
<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-month</algorithm>
</rule>
</tableRule>
<function name="sharding-by-month" class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
</function>
配置说明:
标签属性 | 说明 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 分片函数 |
dateFormat | 日期格式 |
sBeginDate | 开始日期(无默认值) |
"sEndDate | 结束日期(无默认值) |
注意
- 默认设置,节点数量必须是12个,每12个月循环从开始分片插入
- 如配置了sBeginDate="2019-01"月是第0个分片,从该时间按月递增,无最大节点
- 配置了sBeginDate = "2015-01-01"sEndDate = "2015-12-01"该配置可以看成和第一个一致
- 配置了sBeginDate = "2015-01-01"sEndDate = "2015-03-01"该配置标识只有 3 个节点;很难与月份对应上;平均分散到 3 个节点上
Mycat分片规则详解的更多相关文章
- Mycat 分片规则详解--单月小时分片
实现方式:单月内按照小时拆分,最小粒度是小时,一天最多可以有24个分片,最少1个分片,下个月从头开始循环 优点:使数据按照小时来进行分时存储,颗粒度比日期(天)分片要小,适用于数据采集类存储分片 缺点 ...
- Mycat 分片规则详解--日期(天)分片
实现方式:按照日期来分片 优点:使数据按照日期来进行分时存储 缺点:由于数据是连续的,所以该方案不能有效的利用资源 配置示例: <tableRule name="sharding-by ...
- Mycat 分片规则详解--应用指定分片
实现方式:根据字符串的子串(必须是数字)计算分区号(由调用方传递参数,显示指定分区号),例如,id=05-12232323,其中 id 是从 startIndex = 0,size=2,即截取的子串是 ...
- Mycat 分片规则详解--取模分片
实现方式:切分规则根据配置中输入的数值n.此种分片规则将数据分成n份(通常dn节点也为n),从而将数据均匀的分布于各节点上. 优点:这种策略可以很好的分散数据库写的压力.比较适合于单点查询的情景 缺点 ...
- Mycat 分片规则详解--枚举分片
实现方式:切分规则根据文件(partition-hash-int.txt)配置的可能的枚举来进行分片,此种分片规则理解为枚举分区,会比较适合于取值固定的场合,比如说省份(固定值) 优点:适用于按照省份 ...
- Mycat 分片规则详解--数据迁移及节点扩容
使用的是 Mycat 提供的 dataMigrate 脚本进行对数据进行迁移和节点扩容,目前支持的 Mycat 是1.6 版本,由于 Mycat 是由 Java 编写的因此在做数据迁移及节点扩容时需要 ...
- Mycat 分片规则详解--取模范围分片
实现方式:该算法先进行取模,然后根据取模值所属范围进行分片 优点:可以自主决定取模后数据的节点分布 缺点:dataNode 划分节点是事先建好的,需要扩展时比较麻烦. 配置示例: <tableR ...
- Mycat 分片规则详解--范围取模分片
实现方式:该算法先进行范围分片,计算出分片组,组内在取模 优点:综合了范围分片和取模分片的优点,分片组内使用取模可以保证组内的数据分布比较均匀,分片组之间采用范围分片可以兼顾范围分片的特点,事先规划好 ...
- Mycat 分片规则详解--ASCII 取模范围分片
实现方式:该算法与取模范围算法类似,该算法支持数值.符号.字母取模.首先截取长度为 prefixLength 的子串,在对子串中每一个字符的 ASCII 码求和,然后对求和值进行取模运算(sum%pa ...
随机推荐
- Object-C语言Block的实现方式
开场白 Block基本概念 中间态转换方法 Block编译后结果分析 Block运行时状态与编译状态对比 开场白 Object-C语言是对C语言的扩展,所以将OC源码进行编译的时候,会将OC源 ...
- js加载事件和js函数定义
一 dom文档树加载完之后执行一个函数 在Dom加载完成后执行函数,下面这三个的作用是一样的,window.onload 是JavaScript的,window.onload是在dom文档树加载完和 ...
- 长期更新系列:C#知识点
PS:写这个主要是基础差,写这么一个主要是为了自己查漏补缺,不会的搞会了.会了搞的更会.顺便整理知识. 目录 1.C#知识点:值类型和引用类型 2.C#知识点:I/0 3.C#知识点:is和as 4. ...
- PowerDesigner最基础的使用方法入门学习(转载)
来源:http://www.cnblogs.com/biehongli/p/6025954.html 1:入门级使用PowerDesigner软件创建数据库(直接上图怎么创建,其他的概念知识可自行学习 ...
- Java学习-jsp内置对象Session
- java后台工具类-通过交易码获得方法名
import org.apache.log4j.Logger; import net.sf.json.JSONObject; public class GetResultByTransCode { p ...
- JSP学习笔记(4)-Javabean
按照sun公司的定义,Javabean是一个可重复使用的软件组件,实际上Javabean是一种Java类,通过封装属性和方法成为具有某种功能或处理某个业务的对象,简称Bean,Javabean基于ja ...
- c#如何将子窗体显示到父窗体的容器(panel)控件中
如何将一个窗体显示到一个容器控件中,刚开始想的比较简单,用窗体容器控件添加一般控件的方法,试了一试,代码如下: Form2 frm = new Form2(); this.panel1.Control ...
- 在vue-cli中使用layer中的layData日期组件
有朋友问我怎么在vue-cli项目中使用layui中的layData组件,有时间从网上查了下写下篇文章. 1.首先去layData官网把文件包下载下来,解压出来的laydate文件夹整个放在vue-c ...
- linux_kernel_uaf漏洞利用实战
前言 好像是国赛的一道题.一个 linux 的内核题目.漏洞比较简单,可以作为入门. 题目链接: 在这里 正文 题目给了3个文件 分配是 根文件系统 , 内核镜像, 启动脚本.解压运行 boot.sh ...