在上一篇《TensorFlow入门之MNIST样例代码分析》中,我们讲解了如果来用一个三层全连接网络实现手写数字识别。但是在实际运用中我们需要更有效率,更加灵活的代码。在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块。并且在这个版本中添加了模型持久化功能,我们可以将模型保存下来,方便之后的模型检验,并且我们可以一边训练新的模型,一边来检验模型,代码更加的灵活高效。

前向传播模块

首先将前向传播过程抽象出来,作为一个可以作为训练测试共享的模块,取名为mnist_inference.py,将这个过程抽象出来的好处是,一是可以保证在训练或者测试的过程中前向传播的一致性,提高代码的复用性。还有一点是我们可以更好地将其与滑动平均模型与模型持久化功能结合,更加灵活的来检验新的模型。mnist_inference.py代码如下:

# -*- coding: utf-8 -*-
import tensorflow as tf # 定义神经网络结构相关的参数
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 # 通过tf.get_variable函数来获取变量。在训练神经网络时会创建这些变量;在测试时会通
# 过保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变
# 量重命名,所以可以直接通过相同的名字在训练时使用变量自身,而在测试时使用变量的滑动
# 平均值。在这个函数中也会将变量的正则化损失加入到损失集合。
def get_weight_variable(shape, regularizer):
weights = tf.get_variable(
"weights", shape,
initializer=tf.truncated_normal_initializer(stddev=0.1)
)
# 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里
# 使用了add_to_collection函数将一个张量加入一个集合,而这个集合的名称为losses。
# 这是自定义的集合,不在TensorFlow自动管理的集合列表中。
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights # 定义神经网络的前向传播过程
def inference(input_tensor, regularizer):
# 声明第一层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer1'):
# 这里通过tf.get_variable或者tf.Variable没有本质区别,因为在训练或者测试
# 中没有在同一个程序中多次调用这个函数。如果在同一个程序中多次调用,在第一次
# 调用之后需要将reuse参数设置为True。
weights = get_weight_variable(
[INPUT_NODE, LAYER1_NODE], regularizer
)
biases = tf.get_variable(
"biases", [LAYER1_NODE],
initializer=tf.constant_initializer(0.0)
)
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights)+biases) # 类似的声明第二层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer2'):
weights = get_weight_variable(
[LAYER1_NODE, OUTPUT_NODE], regularizer
)
biases = tf.get_variable(
"biases", [OUTPUT_NODE],
initializer=tf.constant_initializer(0.0)
)
layer2 = tf.matmul(layer1, weights) + biases # 返回最后前向传播的结果
return layer2

训练模块

将训练模型的模块提取出来,训练模块命名为mnist_train.py,在下面的代码中每过1000个step我们就保存一次模型。代码如下:

# -*- coding: utf-8 -*-
import os import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数。
import mnist_inference # 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 # 模型保存的路径和文件名
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "model.ckpt" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
# 直接使用mnist_inference.py中定义的前向传播过程
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step
)
variable_averages_op = variable_averages.apply(
tf.trainable_variables()
)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=y, labels=tf.argmax(y_, 1)
)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY
)
train_step = tf.train.GradientDescentOptimizer(learning_rate)\
.minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variable_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run() # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独
# 立的程序来完成。
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step],
feed_dict={x: xs, y_: ys})
# 每1000轮保存一次模型
if i % 1000 == 0:
# 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失
# 函数大小。通过损失函数的大小可以大概了解训练的情况。在验证数
# 据集上正确率的信息会有一个单独的程序来生成
print("After %d training step(s), loss on training "
"batch is %g." % (step, loss_value))
# 保存当前的模型。注意这里给出了global_step参数,这样可以让每个
# 被保存的模型的文件名末尾加上训练的轮数,比如“model.ckpt-1000”,
# 表示训练1000轮之后得到的模型。
saver.save(
sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
global_step=global_step
) def main(argv=None):
mnist = input_data.read_data_sets("./data", one_hot=True)
train(mnist) if __name__ == "__main__":
tf.app.run()

验证与测试模块

验证模块与测试模块可以对保存好的训练模型进行验证与测试,在下面的代码中我们选择每过10秒钟验证一个最新的模型。这样做的好处是可以将训练与验证或者测试分割开来,同时进行。该模块命名为mnist_eval.py

# -*- coding: utf-8 -*-
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py 和mnist_train.py中定义的常量和函数。
import mnist_inference
import mnist_train # 每10秒加载一次最新的模型,并且在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
# 定义输入输出的格式。
x = tf.placeholder(
tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input'
)
y_ = tf.placeholder(
tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input'
)
validate_feed = {x: mnist.validation.images,
y_: mnist.validation.labels} # 直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关注ze正则化损失的值
# 所以这里用于计算正则化损失的函数被设置为None。
y = mnist_inference.inference(x, None) # 使用前向传播的结果计算正确率。如果需要对未知的样例进行分类,那么使用
# tf.argmax(y,1)就可以得到输入样例的预测类别了。
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均
# 的函数来获取平均值了。这样就可以完全共用mnist_inference.py中定义的
# 前向传播过程。
variable_averages = tf.train.ExponentialMovingAverage(
mnist_train.MOVING_AVERAGE_DECAY
)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) # 每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检验训练过程中正确率的
# 变化。
while True:
with tf.Session() as sess:
# tf.train.get_checkpoint_state函数会通过checkpoint文件自动
# 找到目录中最新模型的文件名。
ckpt = tf.train.get_checkpoint_state(
mnist_train.MODEL_SAVE_PATH
)
if ckpt and ckpt.model_checkpoint_path:
# 加载模型。
saver.restore(sess, ckpt.model_checkpoint_path)
# 通过文件名得到模型保存时迭代的轮数。
global_step = ckpt.model_checkpoint_path\
.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy,
feed_dict=validate_feed)
print("After %s training step(s), validation "
"accuracy = %g" % (global_step, accuracy_score))
else:
print("No checkpoint file found")
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("./data", one_hot=True)
evaluate(mnist) if __name__ == "__main__":
tf.app.run()

总结

这个样例是一个非常好的可以用来理解TensorFlow的程序,特别是TensorFlow的计算图的理解,还有模型持久化与恢复,变量的管理,滑动平均模型的实现等等。还有这种灵活的模块分块的思想也值得学习。

TensorFlow入门之MNIST最佳实践的更多相关文章

  1. TensorFlow入门之MNIST最佳实践-深度学习

    在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...

  2. 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  3. TensorFlow入门之MNIST样例代码分析

    这几天想系统的学习一下TensorFlow,为之后的工作打下一些基础.看了下<TensorFlow:实战Google深度学习框架>这本书,目前个人觉得这本书还是对初学者挺友好的,作者站在初 ...

  4. Tensorflow之MNIST的最佳实践思路总结

    Tensorflow之MNIST的最佳实践思路总结   在上两篇文章中已经总结出了深层神经网络常用方法和Tensorflow的最佳实践所需要的知识点,如果对这些基础不熟悉,可以返回去看一下.在< ...

  5. 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践

    分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...

  6. 【转载】Linux小白最佳实践:《超容易的Linux系统管理入门书》(连载六)Linux的网络配置

    本篇是Linux小白最佳实践第6篇,目的就是让白菜们了解Linux网络是如何配置的.Linux系统在服务器市场占有很大的份额,尤其在互连网时代,要使用计算机就离不开网络. 想每天能听到小妞的语音播报, ...

  7. Linux小白最佳实践:《超容易的Linux系统管理入门书》(连载五)Linux系统的对话方式

    本篇是Linux小白最佳实践第5篇,目的就是让白菜们了解Linux进程之间是如何对话的.之前连载的几篇,在微信上引起了很多的反响,有人也反映图多文字少,感觉没有干货.本篇选了大部分是实战讲解的&quo ...

  8. RocketMQ入门(2)最佳实践

    转自:http://www.changeself.net/archives/rocketmq入门(2)最佳实践.html RocketMQ入门(2)最佳实践 一.服务端安装部署 我是在虚拟机中的Cen ...

  9. TensorFlow 入门之手写识别(MNIST) softmax算法

    TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

随机推荐

  1. Spark聚合操作:combineByKey()

    Spark中对键值对RDD(pairRDD)基于键的聚合函数中,都是通过combineByKey()实现的. 它可以让用户返回与输入数据类型不同的返回值(可以自己配置返回的参数,返回的类型) 首先理解 ...

  2. 4星|《钱的历史》:大英博物馆的钱币简史,彩图众多不适合在kindle上阅读

    钱的历史(大英博物馆权威出品,一部金钱简史) 大英博物馆的两位钱币馆馆长的作品.非常专业.基本是世界钱币简史.从钱币的发展变迁讲到涉及到的历史大事,重心当然是欧洲的钱币史,中国.印度也各安排了一章. ...

  3. Netty源码分析第5章(ByteBuf)---->第8节: subPage级别的内存分配

    Netty源码分析第五章: ByteBuf 第八节: subPage级别的内存分配 上一小节我们剖析了page级别的内存分配逻辑, 这一小节带大家剖析有关subPage级别的内存分配 通过之前的学习我 ...

  4. python - 定时清理ES 索引

    只保留三天 #!/usr/bin/env python3 # -*- coding:utf-8 -*- import os import datetime # 时间转化为字符串 now_time = ...

  5. 某简单易懂的人脸识别 API 的开发环境搭建和简易教程

    最近接了个人脸识别相关的项目,是基于某个非常简单易懂的人脸识别 API:face_recognition 做的.这个库接口非常傻瓜,很适合新手上手,而且可以研究其源码来学习 dlib 这个拥有更加灵活 ...

  6. Nginx笔记(一):安装

    Nginx在安装前需要先安装其所依赖的类库,所以需先行安装好之后再进行Nginx安装. Nginx依赖以下模块: l  gzip模块需要 zlib 库 l  rewrite模块需要 pcre 库 l  ...

  7. 入门向:南邮CTF_ReadAsm2_WP

    题目链接:http://ctf.nuptzj.cn/challenges#ReadAsm2 我比较菜,所以把思路全部敲上来了. 题目很明确告诉我们,这道题考察阅读汇编代码的能力. 在对编译环境和调用约 ...

  8. visudo命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/ImJerryChan/p/6667819.html 目录前言一.介绍二.配置文件简介三.实战配置 前言:    su ...

  9. Centos7.4简单安装使用gitlab+maven+jenkins实现java代码的持续集成部署

    1.工具的简单介绍 gitlab--源代码版本管理控制工具 maven--java代码编译构建工具 jenkins--基于java开发的自动化持续集成部署工具 sonar--代码质量管理工具 2.gi ...

  10. HDU 1556 Color the ball (一维树状数组,区间更新,单点查询)

    中文题,题意就不说了 一开始接触树状数组时,只知道“单点更新,区间求和”的功能,没想到还有“区间更新,单点查询”的作用. 树状数组有两种用途(以一维树状数组举例): 1.单点更新,区间查询(即求和) ...