最邻近规则分类KNN算法
例子:
- 求未知电影属于什么类型:
算法介绍:
步骤:
- 为了判断未知实例的类别,以所有已知类别的实例作为参照
- 选择参数K
- 计算未知实例与所有已知实例的距离
- 选择最近K个已知实例
- 根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别
细节:
- 关于K的选择
- 关于距离的衡量方法:
- 简单。
- 易于理解。
- 容易实现。
- 通过对K的选择可具备丢噪音数据的健壮性。
算法缺点:
- 需要大量空间储存所有已知实例。
- 算法复杂度高(需要比较所有已知实例与要分类的实例)。
- 当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本。
KNN代码(Python实现):
import csv
import random
import math
import operator def loadDataset(filename, split, trainingSet=[], testSet=[]):
with open(filename, 'r') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines) #得到文件中的数据
for x in range(len(dataset) - 1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split: #以split为界限把数据集分为两部分
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x]) def euclideanDistance(instance1, instance2, length): #计算距离(传入两个实例和维度)
distance = 0
for x in range(length):
distance += pow((instance1[x] - instance2[x]), 2) #计算所有维度的平方和
return math.sqrt(distance) def getNeighbors(trainingSet, testInstance, k): #返回最近的几个邻域
distances = [] #所有计算得出的距离的容器
length = len(testInstance) - 1 #测试实例的维度
for x in range(len(trainingSet)):
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1)) #key=operator.itemgetter(1)根据第一个值域进行排序
#print(distances)
neighbors = []
for x in range(k):
neighbors.append(distances[x][0])
return neighbors def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True)
return sortedVotes[0][0] def getAccuracy(testSet, predictions): #计算正确度
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct / float(len(testSet))) * 100.0 def main():
# prepare data
trainingSet = []
testSet = []
split = 0.67 #以split为界限把数据集分为两部分
loadDataset(r'iris.data.txt', split, trainingSet, testSet)
print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet)))
# generate predictions
predictions = []
k = 3
for x in range(len(testSet)):
neighbors = getNeighbors(trainingSet, testSet[x], k)
result = getResponse(neighbors)
predictions.append(result)
print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: ' + repr(accuracy) + '%') if __name__ == '__main__':
main()
虹膜数据:
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.2,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.6,1.4,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
最邻近规则分类KNN算法的更多相关文章
- 机器学习--最邻近规则分类KNN算法
理论学习: 3. 算法详述 3.1 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选 ...
- 机器学习算法 - 最近邻规则分类KNN
上节介绍了机器学习的决策树算法,它属于分类算法,本节我们介绍机器学习的另外一种分类算法:最近邻规则分类KNN,书名为k-近邻算法. 它的工作原理是:将预测的目标数据分别跟样本进行比较,得到一组距离的数 ...
- kNN(K-Nearest Neighbor)最邻近规则分类
KNN最邻近规则,主要应用领域是对未知事物的识别,即推断未知事物属于哪一类,推断思想是,基于欧几里得定理,推断未知事物的特征和哪一类已知事物的的特征最接近: K近期邻(k-Nearest Neighb ...
- kNN(K-Nearest Neighbor)最邻近规则分类(转)
KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近: K最近邻(k-Nearest Neighb ...
- 最邻近规则分类(K-Nearest Neighbor)KNN算法
自写代码: # Author Chenglong Qian from numpy import * #科学计算模块 import operator #运算符模块 def createDaraSet( ...
- 4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用
1 数据集介绍: 虹膜 150个实例 萼片长度,萼片宽度,花瓣长度,花瓣宽度 (sepal length, sepal width, petal length and petal wi ...
- python实现简单分类knn算法
原理:计算当前点(无label,一般为测试集)和其他每个点(有label,一般为训练集)的距离并升序排序,选取k个最小距离的点,根据这k个点对应的类别进行投票,票数最多的类别的即为该点所对应的类别.代 ...
- 机器学习KNN算法
KNN(最邻近规则分类K-Nearest-Neighibor)KNN算法 1. 综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classific ...
- KNN算法在保险业精准营销中的应用
版权所有,可以转载,禁止修改.转载请注明作者以及原文链接. 一.KNN算法概述 KNN是Machine Learning领域一个简单又实用的算法,与之前讨论过的算法主要存在两点不同: 它是一种非参方法 ...
随机推荐
- python 冒泡法 排序
冒泡排序 冒泡排序(Bubble Sort):重复地遍历要排序的数列,依次比较两个元素,如果他们的顺序不符就把他们交换过来.就像气泡一样,需要排序的元素通过比较.交换位置,一点一点浮到对应的位置. 个 ...
- 4.tar的各个参数详解
转于:https://blog.csdn.net/liuyundemhsg/article/details/52525028 参数:-c :建立一个压缩文件的参数指令(create 的意思):-x : ...
- python3.5无法安装pip,报错ImportError: cannot import name 'HTTPSHandler'
本人系统为:centos6 解决方法: 1 安装openssl yum install openssl 2 安装openssl-devel yum install openssl-devel 3 ...
- np.isin判断数组元素在另一数组中是否存在
np.isin用法 觉得有用的话,欢迎一起讨论相互学习~Follow Me np.isin(a,b) 用于判定a中的元素在b中是否出现过,如果出现过返回True,否则返回False,最终结果为一个形状 ...
- bzoj千题计划131:bzoj3993: [SDOI2015]星际战争
http://www.lydsy.com/JudgeOnline/problem.php?id=3993 二分答案 源点向武器连 mid*攻击力的边 机器人向汇点连 防御力 的边 武器i能攻击机器人j ...
- [2009国家集训队]小Z的袜子(hose) 浅谈莫队
浅谈莫队 推荐学习博客 http://foreseeable97.logdown.com/posts/158522-233333 借用题目: bzoj 2038 2009 国家集训队 小Z的袜子htt ...
- Linux根目录解析
根目录结构如下: 1. / - 根目录: 每一个文件和目录都从这里开始. 只有root用户具有该目录下的写权限.此目录和/root目录不同,/root目录是root用户的主目录. 2. /bin - ...
- textview 使drawable与text一起居中的textview,这里仅支持drawableleft
package cc.hent.www.ramo_cmedcial.CustomView; import android.content.Context; import android.graphic ...
- SQL on Hadoop中用到的主要技术——MPP vs Runtime Framework
转载声明 本文转载自盘点SQL on Hadoop中用到的主要技术,个人觉得该文章对于诸如Impala这样的MPP架构的SQL引擎和Runtime Framework架构的Hive/Spark SQL ...
- @Resource,@Autowired,@Inject3种注入方式
概况 @Resource,@Autowired,@Inject 这3种都是用来注入bean的,它们属于不同的程序中. ANNOTATION PACKAGE SOURCE @Resource javax ...