python中mock的使用
什么是mock?
mock在翻译过来有模拟的意思。这里要介绍的mock是辅助单元测试的一个模块。它允许您用模拟对象替换您的系统的部分,并对它们已使用的方式进行断言。
在Python2.x 中 mock是一个单独模块,需要单独安装。
> pip install -U mock
在Python3.x中,mock已经被集成到了unittest单元测试框架中,所以,可以直接使用。
可能你和我初次接触这个概念的时候会有这样的疑问:把要测的东西都模拟掉了还测试什么呢?
但在,实际生产中的项目是非常复杂的,对其进行单元测试的时候,会遇到以下问题:
- 接口的依赖
- 外部接口调用
- 测试环境非常复杂
单元测试应该只针对当前单元进行测试, 所有的内部或外部的依赖应该是稳定的, 已经在别处进行测试过的.使用mock 就可以对外部依赖组件实现进行模拟并且替换掉, 从而使得单元测试将焦点只放在当前的单元功能。
简单的例子
我们先从最简单例子开始。
modular.py

#modular.py class Count(): def add(self):
pass

这里要实现一个Count计算类,add() 方法要实现两数相加。但,这个功能我还没有完成。这时就可以借助mock对其进行测试。
mock_demo01.py

from unittest import mock
import unittest from modular import Count # test Count class
class TestCount(unittest.TestCase): def test_add(self):
count = Count()
count.add = mock.Mock(return_value=13)
result = count.add(8,5)
self.assertEqual(result,13) if __name__ == '__main__':
unittest.main()

count = Count()
首先,调用被测试类Count() 。
count.add = mock.Mock(return_value=7)
通过Mock类模拟被调用的方法add()方法,return_value 定义add()方法的返回值。
result = count.add(2,5)
接下来,相当于在正常的调用add()方法,传两个参数2和5,然后会得到相加的结果7。然后,7的结果是我们在上一步就预先设定好的。
self.assertEqual(result,7)
最后,通过assertEqual()方法断言,返回的结果是否是预期的结果7。
运行测试结果:

> python3 mock_demo01.py
.
----------------------------------------------------------------------
Ran 1 test in 0.000s OK

这样一个用例就在mock的帮助下编写完成,并且测试通过了。
完成功能测试
再接下来完成module.py文件中add()方法。

#module.py class Count(): def add(self, a, b):
return a + b

然后,修改测试用例:

from unittest import mock
import unittest
from module import Count class MockDemo(unittest.TestCase): def test_add(self):
count = Count()
count.add = mock.Mock(return_value=13, side_effect=count.add)
result = count.add(8, 8)
print(result)
count.add.assert_called_with(8, 8)
self.assertEqual(result, 16) if __name__ == '__main__':
unittest.main()

count.add = mock.Mock(return_value=13, side_effect=count.add)
side_effect参数和return_value是相反的。它给mock分配了可替换的结果,覆盖了return_value。简单的说,一个模拟工厂调用将返回side_effect值,而不是return_value。
所以,设置side_effect参数为Count类add()方法,那么return_value的作用失效。
result = count.add(8, 8)
print(result)
这次将会真正的调用add()方法,得到的返回值为16(8+8)。通过print打印结果。
assert_called_with(8,8)
检查mock方法是否获得了正确的参数。
解决测试依赖
前面的例子,只为了让大家对mock有个初步的印象。再接来,我们看看如何mock方法的依赖。
例如,我们要测试A模块,然后A模块依赖于B模块的调用。但是,由于B模块的改变,导致了A模块返回结果的改变,从而使A模块的测试用例失败。其实,对于A模块,以及A模块的用例来说,并没有变化,不应该失败才对。
这个时候就是mock发挥作用的时候了。通过mock模拟掉影响A模块的部分(B模块)。至于mock掉的部分(B模块)应该由其它用例来测试。

# function.py
def add_and_multiply(x, y):
addition = x + y
multiple = multiply(x, y)
return (addition, multiple) def multiply(x, y):
return x * y

然后,针对 add_and_multiply()函数编写测试用例。func_test.py

import unittest
import function class MyTestCase(unittest.TestCase): def test_add_and_multiply(self):
x = 3
y = 5
addition, multiple = function.add_and_multiply(x, y)
self.assertEqual(8, addition)
self.assertEqual(15, multiple) if __name__ == "__main__":
unittest.main()

运行结果:

> python3 func_test.py
.
----------------------------------------------------------------------
Ran 1 test in 0.000s OK

目前运行一切正确常,然而,add_and_multiply()函数依赖了multiply()函数的返回值。如果这个时候修改multiply()函数的代码。
……
def multiply(x, y):
return x * y + 3
这个时候,multiply()函数返回的结果变成了x*y加3。
再次运行测试:

> python3 func_test.py
F
======================================================================
FAIL: test_add_and_multiply (__main__.MyTestCase)
----------------------------------------------------------------------
Traceback (most recent call last):
File "fun_test.py", line 19, in test_add_and_multiply
self.assertEqual(15, multiple)
AssertionError: 15 != 18 ----------------------------------------------------------------------
Ran 1 test in 0.000s FAILED (failures=1)

测试用例运行失败了,然而,add_and_multiply()函数以及它的测试用例并没有做任何修改,罪魁祸首是multiply()函数引起的,我们应该把 multiply()函数mock掉。

import unittest
from unittest.mock import patch
import function class MyTestCase(unittest.TestCase): @patch("function.multiply")
def test_add_and_multiply2(self, mock_multiply):
x = 3
y = 5
mock_multiply.return_value = 15
addition, multiple = function.add_and_multiply(x, y)
mock_multiply.assert_called_once_with(3, 5) self.assertEqual(8, addition)
self.assertEqual(15, multiple) if __name__ == "__main__":
unittest.main()

@patch("function.multiply")
patch()装饰/上下文管理器可以很容易地模拟类或对象在模块测试。在测试过程中,您指定的对象将被替换为一个模拟(或其他对象),并在测试结束时还原。
这里模拟function.py文件中multiply()函数。
def test_add_and_multiply2(self, mock_multiply):
在定义测试用例中,将mock的multiply()函数(对象)重命名为 mock_multiply对象。
mock_multiply.return_value = 15
设定mock_multiply对象的返回值为固定的15。
ock_multiply.assert_called_once_with(3, 5)
检查ock_multiply方法的参数是否正确。
再次,运行测试用例,通过!
python中mock的使用的更多相关文章
- Python中Mock的示例(转)
原文:https://segmentfault.com/a/1190000008753754 一些常用的mock示例 先简单定义个类,方便举例: class Person: def __init__( ...
- [翻译]Mock 在 Python 中的使用介绍
目录 Mock 在 Python 中的使用介绍 原文链接与说明 恐惧系统调用 一个简单的删除函数 使用 Mock 重构 潜在陷阱 向 'rm' 中加入验证 将文件删除作为服务 方法 1:模拟实例的方法 ...
- 利用Python中的mock库对Python代码进行模拟测试
这篇文章主要介绍了利用Python中的mock库对Python代码进行模拟测试,mock库自从Python3.3依赖成为了Python的内置库,本文也等于介绍了该库的用法,需要的朋友可以参考下 ...
- 【转】利用Python中的mock库对Python代码进行模拟测试
出处 https://www.toptal.com/python/an-introduction-to-mocking-in-python http://www.oschina.net/transla ...
- Python之Mock的入门
参考文章: https://segmentfault.com/a/1190000002965620 一.Mock是什么 Mock这个词在英语中有模拟的这个意思,因此我们可以猜测出这个库的主要功能是模拟 ...
- 使用Python的Mock库进行PySpark单元测试
测试是软件开发中的基础工作,它经常被数据开发者忽视,但是它很重要.在本文中会展示如何使用Python的uniittest.mock库对一段PySpark代码进行测试.笔者会从数据科学家的视角来进行描述 ...
- Python 的mock模拟测试介绍
如何不靠耐心测试 可能我们正在写一个社交软件并且想测试一下"发布到Facebook的功能",但是我们不希望每次运行测试集的时候都发布到Facebook上. Python的unitt ...
- python之mock模块基本使用
mock简介 mock原来是python的第三方库 python3以后mock模块已经整合到了unittest测试框架中,不用再单独安装 Mock这个词在英语中有模拟的这个意思,因此我们可以猜测出这个 ...
- 关于Python中的lambda
lambda是Python编程语言中使用频率较高的一个关键字.那么,什么是lambda?它有哪些用法?网上的文章汗牛充栋,可是把这个讲透的文章却不多.这里,我们通过阅读各方资料,总结了关于Python ...
随机推荐
- linux那些事
useradd -m -d /home/changp -Gusers,dialout,video account_name 创建新的账号 passwd account_name 修改指定账号的密码
- golang 中 sync包的 WaitGroup
golang 中的 sync 包有一个很有用的功能,就是 WaitGroup 先说说 WaitGroup 的用途:它能够一直等到所有的 goroutine 执行完成,并且阻塞主线程的执行,直到所有的 ...
- python---基础知识回顾(十)进程和线程(协程gevent:线程在I/O请求上的优化)
优点:使用gevent协程,可以更好的利用线程资源.(基于线程实现) 需求:使用一个线程,去请求多个网站的资源(注意,请求上会有延时)<实际上是去请求了大量的网站信息,我们使用了多线程,只不过每 ...
- 转:String StringBuffer StringBuilder区别
转自:http://www.iteye.com/topic/522167 作者:每次上网冲杯Java时,都能看到关于String无休无止的争论.还是觉得有必要让这个讨厌又很可爱的String美眉,赤裸 ...
- Git记录-Git版本控制介绍
git config命令用于获取并设置存储库或全局选项.这些变量可以控制Git的外观和操作的各个方面. 如果在使用Git时需要帮助,有三种方法可以获得任何git命令的手册页(manpage)帮助信息: ...
- Gulp API之怎样压缩CSS
先做一个简单的科普 gulp.src() 是用来定位执行路径的,参数通常是一个path gulp.dest() 是用来定位输出路径的,执行的结果都会保存在这个路径下面,可以到路径下面查看结果 gulp ...
- 不用 Twitter Bootstrap 的5个理由
在以前我们的博客文章中,我们讨论了在web设计和开发项目中使用Twitter Bootstrap的好处.Twitter Bootstrap也有很多的缺点.让我们看看这些主要的问题: 1,它不遵循最佳实 ...
- Linux/Unix 下自制番茄钟
习惯使用番茄工作法,在Linux上工作时也需要一个番茄钟. 安装一个Linux下番茄钟工作软件? 其实根本没必要,我们可以用Linux下经典的at命令实现一个简单的番茄钟. 安装AT 一般Linux基 ...
- [转]天才计算机程序员 -- fabrice bellard
这位老兄就是用javascript写linux的那位,他的主页是:http://bellard.org/ 上面有他的几个作品,包括qemu,ffmpeg,tcc等. 这个世界从来不缺天才,只缺乏利用天 ...
- FPGA基础知识8(FPGA静态时序分析)
任何学FPGA的人都跑不掉的一个问题就是进行静态时序分析.静态时序分析的公式,老实说很晦涩,而且总能看到不同的版本,内容又不那么一致,为了彻底解决这个问题,我研究了一天,终于找到了一种很简单的解读办法 ...