题面

题解

考虑进行\(dp\)。

设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率。

我们可以知道第\(i\)张卡不被触发的概率为\((1 - p_i) ^ {r - j}\),因为一共会考虑\(r - j\)次,每次都没有触发。

所以被触发的概率为\(1 - (1 - p_i) ^ {r - j + 1}\)。

于是\(f[i][j] = f[i - 1][j] \times (1 - p_i) ^ {r - j} + f[i - 1][j - 1] \times (1 - (1 - p_i) ^ {r - j + 1})\)。

同样,设\(g[i][j]\)表示期望,类似地进行转移即可。

代码

#include<cstdio>
#include<cctype>
#define RG register inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(230), maxm(150);
double f[maxn][maxm], g[maxn][maxm], p[maxn], Pow[maxn][maxm];
int n, r, d[maxn], T; int main()
{
T = read(); f[0][0] = 1;
while(T--)
{
n = read(), r = read();
for(RG int i = 1; i <= n; i++) scanf("%lf%d", p + i, d + i);
for(RG int i = 1; i <= n; i++) Pow[i][0] = 1, f[i][0] = g[i][0] = 0;
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= r; j++)
f[i][j] = g[i][j] = 0, Pow[i][j] = Pow[i][j - 1] * (1 - p[i]);
for(RG int i = 1; i <= n; i++)
for(RG int j = 0; j <= r && j <= i; j++)
{
f[i][j] += f[i - 1][j] * Pow[i][r - j];
g[i][j] += g[i - 1][j] * Pow[i][r - j];
if(j) f[i][j] += f[i - 1][j - 1] * (1 - Pow[i][r - j + 1]),
g[i][j] += (g[i - 1][j - 1] + d[i] * f[i - 1][j - 1]) *
(1 - Pow[i][r - j + 1]);
}
double ans = 0;
for(RG int i = 0; i <= r; i++) ans += g[n][i];
printf("%.10lf\n", ans);
}
return 0;
}

【HNOI2015】亚瑟王的更多相关文章

  1. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  2. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  3. 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

    [BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...

  4. [洛谷 P3239] [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...

  5. 4008: [HNOI2015]亚瑟王

    4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. ...

  6. Luogu_3239 [HNOI2015]亚瑟王

    Luogu_3239 [HNOI2015]亚瑟王 vim-markdown 真好用 这个题难了我一下午 第一道概率正而八经\(DP\),还是通过qbxt讲解才会做的. 发现Sengxian真是个dal ...

  7. 【BZOJ4008】[HNOI2015]亚瑟王

    [BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...

  8. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  9. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  10. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

随机推荐

  1. ASP.Net WebAPI的返回值

    Asp.Net WebAPI服务函数的返回值主要可以分为void.普通对象.HttpResponseMessag.IHttpActionResult e四种,本文这里简单的介绍一下它们的区别. 一.返 ...

  2. 3 个简单、优秀的 Linux 网络监视器

    作者: Carla Schroder 译者: LCTT geekpi 用 iftop.Nethogs 和 vnstat 了解更多关于你的网络连接. 你可以通过这三个 Linux 网络命令,了解有关你网 ...

  3. Linux rpm命令详解

    rpm命令是RPM软件包的管理工具.rpm原本是Red Hat Linux发行版专门用来管理Linux各项套件的程序,由于它遵循GPL规则且功能强大方便,因而广受欢迎.逐渐受到其他发行版的采用.RPM ...

  4. eclipse中 项目-->属性-->为什么没有deployment assembly 选项

    原因: 因为当前的maven工程不是web工程,需要转换成web工程. 解决方法: 右击工程属性,找到Project Facets,选择Dynamic Web Module,2.5 点击apply.这 ...

  5. C# HttpWebRequest 笔记

    目录: 1,HttpWebRequest 实例化 2,GetResponse 获取请求结果 3,获取结果 4,获取流信息 HttpWebRequest 是一个Http 请求类,继承于 WebReque ...

  6. 多路I/O复用(select、poll、epoll)的比较学习:

    elect.poll.epoll之间的区别总结[整理]  转自:http://www.cnblogs.com/Anker/p/3265058.html   select,poll,epoll都是IO多 ...

  7. Deadline下:写论文的总结

    终于赶在了11月底截止的时刻提交上了导航年会的论文.三天加上两个半晚上差不多干完了80%的活,无论是否能够被录,这次的写作收获很大. 认识到了: 1. 读文献时,一定要带着问题,如果是我来做,我会怎么 ...

  8. [T-ARA][Bo Peep Bo Peep]

    歌词来源:http://music.163.com/#/song?id=22704468 作曲 : 新沙洞老虎/崔圭成 [作曲 : 新沙洞老虎/崔圭成] 作词 : 新沙洞老虎/崔圭成 [作词 : 新沙 ...

  9. codeforces 293E Close Vertices

    题目链接 正解:点分治+树状数组. 点分治板子题,直接点分以后按照$w$排序,扫指针的时候把$w$合法的路径以$l$为下标加入树状数组统计就行了. 写这道题只是想看看我要写多久..事实证明我确实是老年 ...

  10. 智能家居中的物联网网关的可信计算平台模块(TPM)设计

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/BlueCloudMatrix/article/details/24184461 摘要: 随着智能家居 ...