【[TJOI2015]弦论】
\(SA+SAM\)
第一问显然是一个\(SAM\)的经典问题,我们排完序之后直接使用一直往下找\(n+1-sa[i]-het[i]\)就好了,找到\(K\)减不动了输出就好了
第二问是\(SAM\)的经典问题,我们在\(SAM\)上求出子树和跑一遍\(dfs\)就好了,每层都贪心的减\(K\),减不动就停下来好了
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define re register
#define LL long long
#define maxn 500005
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
int opt,K;
char S[maxn];
int n,m;
namespace SA
{
int tp[maxn],sa[maxn],rk[maxn],tax[maxn],het[maxn];
inline void qsort()
{
for(re int i=0;i<=m;i++) tax[i]=0;
for(re int i=1;i<=n;i++) tax[rk[i]]++;
for(re int i=1;i<=m;i++) tax[i]+=tax[i-1];
for(re int i=n;i;--i) sa[tax[rk[tp[i]]]--]=tp[i];
}
inline void work()
{
for(re int i=1;i<=n;i++) rk[i]=S[i],tp[i]=i;
m=255;qsort();
for(re int w=1,p=0;p<n;w<<=1,m=p)
{
p=0;
for(re int i=1;i<=w;i++) tp[++p]=n-w+i;
for(re int i=1;i<=n;i++) if(sa[i]>w) tp[++p]=sa[i]-w;
qsort();
for(re int i=1;i<=n;i++) std::swap(rk[i],tp[i]);
rk[sa[1]]=p=1;
for(re int i=2;i<=n;i++) rk[sa[i]]=(tp[sa[i-1]]==tp[sa[i]]&&tp[sa[i-1]+w]==tp[sa[i]+w])?p:++p;
}
int k=0;
for(re int i=1;i<=n;i++)
{
if(k) --k;
int j=sa[rk[i]-1];
while(S[i+k]==S[j+k]) ++k;
het[rk[i]]=k;
}
for(re int i=1;i<=n;i++)
if(K>(n+1-sa[i]-het[i])) K-=n+1-sa[i]-het[i];
else
{
for(re int j=sa[i];j<=sa[i]+het[i]+K-1;j++)
putchar(S[j]);
return;
}
puts("-1");
}
}
namespace SAM
{
int link[maxn<<1],son[maxn<<1][26],sz[maxn<<1],len[maxn<<1];
int tax[maxn<<1],a[maxn<<1],sum[maxn<<1];
int lst=1,cnt=1;
inline void ins(int c)
{
int f=lst,p=++cnt; lst=p;
len[p]=len[f]+1,sz[p]=1;
while(f&&!son[f][c]) son[f][c]=p,f=link[f];
if(!f) {link[p]=1;return;}
int x=son[f][c];
if(len[f]+1==len[x]) {link[p]=x;return;}
int y=++cnt;
len[y]=len[f]+1,link[y]=link[x],link[x]=link[p]=y;
for(re int i=0;i<26;i++) son[y][i]=son[x][i];
while(f&&son[f][c]==x) son[f][c]=y,f=link[f];
}
inline void work()
{
for(re int i=1;i<=n;i++) ins(S[i]-'a');
for(re int i=1;i<=cnt;i++) tax[len[i]]++;
for(re int i=1;i<=cnt;i++) tax[i]+=tax[i-1];
for(re int i=1;i<=cnt;i++) a[tax[len[i]]--]=i;
for(re int i=cnt;i;--i) sz[link[a[i]]]+=sz[a[i]]; sz[1]=0;
for(re int i=cnt;i;--i) sum[a[i]]+=sz[a[i]];
for(re int i=cnt;i;--i) for(re int j=0;j<26;j++) if(son[a[i]][j]) sum[a[i]]+=sum[son[a[i]][j]];
if(K>sum[1]) {puts("-1");return;}
int now=1;K-=sz[now];
while(K>0)
{
int i=0;
while(K>sum[son[now][i]]) {K-=sum[son[now][i]];i++;}
now=son[now][i];
putchar('a'+i),K-=sz[now];
}
}
}
int main()
{
scanf("%s",S+1);n=strlen(S+1);scanf("%d%d",&opt,&K);
if(!opt) SA::work();
else SAM::work();
return 0;
}
【[TJOI2015]弦论】的更多相关文章
- BZOJ 3998: [TJOI2015]弦论 [后缀自动机 DP]
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2152 Solved: 716[Submit][Status] ...
- Luogu P3975 [TJOI2015]弦论
题目链接 \(Click\) \(Here\) 题目大意: 重复子串不算的第\(k\)大子串 重复子串计入的第\(k\)大子串 写法:后缀自动机. 和\(OI\) \(Wiki\)上介绍的写法不太一样 ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
- 【BZOJ 3998】 3998: [TJOI2015]弦论 (SAM )
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2627 Solved: 881 Description 对于一 ...
- 【BZOJ3998】[TJOI2015]弦论 后缀自动机
[BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...
- BZOJ_3998_[TJOI2015]弦论_后缀自动机
BZOJ_3998_[TJOI2015]弦论_后缀自动机 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行 ...
- bzoj3998: [TJOI2015]弦论(SAM+dfs)
3998: [TJOI2015]弦论 题目:传送门 题解: SAM的入门题目(很好的复习了SAM并加强Right集合的使用) 其实对于第K小的字符串直接从root开始一通DFS就好,因为son边是直接 ...
- luogu P3975 [TJOI2015]弦论 SAM
luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...
- LGOJ3975 TJOI2015 弦论
link:TJOI2015 弦论 题目大意: 给定一个字符串,输出在对该字符串所有的非空子串排序后第\(k\)个 另外的一个限制是\(T\):子串本质相同但位置不同算\(1\)或多个 \(|s| \l ...
- 题解-TJOI2015 弦论
TJOI2015 弦论 字符串 \(s\) 和 \(t\) 和 \(k\).如果 \(t=0\),不同位置的相同子串算 \(1\) 个:如果 \(t=1\),不同位置的相同子串算多个.求 \(k\) ...
随机推荐
- DedeCMS修改管理员用户名
织梦内容管理系统(DedeCMS) 以简单.实用.开源而闻名,是国内最知名的PHP开源网站管理系统,也是使用用户最多的PHP类CMS系统,在经历多年的发展,目前的版本无论在功能,还是在易用性方面,都有 ...
- 深入理解JVM之JVM内存区域与内存分配
深入理解JVM之JVM内存区域与内存分配 在学习jvm的内存分配的时候,看到的这篇博客,该博客对jvm的内存分配总结的很好,同时也利用jvm的内存模型解释了java程序中有关参数传递的问题. 博客出处 ...
- (利用DOM)在新打开的页面点击关闭当前浏览器窗口
1.在开发过程中我们前端的用户体验中有时候会要求点击一个按钮,关闭当前浏览器窗口.用html DOM就可做到. 2.注意:本次写法要求在新窗口中关闭. target="_blank" ...
- windows 查看端口
windowsnetstat命令查看进程:netstat -ano查看占用端口进程:netstat -ano|findstr “端口号”,例子netstat -ano|findstr “8080”.t ...
- OpenGL学习--05--纹理立方体--代码
1.tutorial05.cpp // Include standard headers #include <stdio.h> #include <stdlib.h> // I ...
- HttpSession implements session
体验 使用HttpSession进行会话管理,完全可以忽略HTTP无状态的事实. HttpSession会话管理原理 使用HttpSession进行会话管理十分方便,让Web应用程序看似可以“记得”浏 ...
- doPost方法不支持 a 标签和地址栏直接输入地址访问
demo <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...
- Docker 监控之 SaaS 解决方案
过去的一年中,关于 Docker 的话题从未断过,而如今,从尝试 Docker 到最终决定使用 Docker 的转化率依然在逐步升高,关于 Docker 的讨论更是有增无减.另一方面,大家的注意力也渐 ...
- vuejs code splitting with webpack 3种模式
我们知道一个web app如果太大会严重影响用户的体验,如何能够最快速度地让用户看到完整页面是优化web应用需要做的重要工作. 这其中使用code split实现lazy加载,只让用户初次访问时只加载 ...
- Oracle 启用归档
[applprod@erp10 ~]$ watch ps -fu applprod[applprod@erp10 ~]$ kill -9 82902 84923 [applprod@erp10 ~]$ ...