5334: [Tjoi2018]数学计算

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 220  Solved: 147
[Submit][Status][Discuss]

Description

小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型: 
1 m: x = x  *  m ,输出 x%mod;
2 pos: x = x /  第pos次操作所乘的数(保证第pos次操作一定为类型1,对于每一个类型1 的操作至多会被除一次),输出x%mod
 

Input

一共有t组输入(t ≤ 5)
对于每一组输入,第一行是两个数字Q, mod(Q ≤ 100000, mod  ≤ 1000000000); 
接下来Q行,每一行为操作类型op,操作编号或所乘的数字m(保证所有的输入都是合法的).
1 ≤ Q ≤ 100000
 

Output

对于每一个操作,输出一行,包含操作执行后的x%mod的值
 

Sample Input

1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7

Sample Output

2
1
2
20
10
1
6
42
504
84
 

题目链接:

    http://www.lydsy.com/JudgeOnline/problem.php?id=5334

Solution

  都2018年了,居然还有省选出模板题的吗?

  对询问建一颗线段树,直接维护。。。

代码

#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
const int N=1e5+50;
LL mod;
int n;
struct node{
int l,r;
LL sum;
}d[N<<2];
void build(int l,int r,int t){
d[t].l=l;d[t].r=r;d[t].sum=1;
if(l==r)return;
int mid=l+r>>1;
build(l,mid,t<<1);
build(mid+1,r,t<<1|1);
}
void update(int l,int t,LL val){
if(d[t].l==d[t].r){
d[t].sum=val%mod;
return;
}
if(l<=d[t<<1].r) update(l,t<<1,val);
else update(l,t<<1|1,val);
d[t].sum=d[t<<1].sum*d[t<<1|1].sum%mod;
}
int main(){
int T;scanf("%d",&T);
LL x;
int pos,op;
while(T--){
scanf("%d%lld",&n,&mod);
build(1,n,1);
for(int i=1;i<=n;++i){
scanf("%d",&op);
if(op==1){
scanf("%lld",&x);
update(i,1,x);
}
else{
scanf("%d",&pos);
update(pos,1,1);
}
printf("%lld\n",d[1].sum);
}
}
return 0;
}

  

  

This passage is made by Iscream-2001.

BZOJ 5334--[Tjoi2018]数学计算(线段树)的更多相关文章

  1. 洛谷P4588 [TJOI2018]数学计算(线段树)

    题意 题目链接 Sol TJOI怎么全是板子题 对时间开个线段树,然后就随便做了.... #include<bits/stdc++.h> using namespace std; cons ...

  2. BZOJ5334:[TJOI2018]数学计算(线段树)

    Description 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型:  1 m: x = x  *  m ,输出 x%mod; 2 pos: x = x /  第pos次操作所乘 ...

  3. [TJOI2018]数学计算 线段树

    ---题面--- 题解: ,,,考场上看到这题,没想到竟然是省选原题QAQ,考场上把它当数学题想了好久,因为不知道怎么处理有些数没有逆元的问题....知道这是线段树后恍然大悟. 首先可以一开始就建出一 ...

  4. BZOJ 5334: [Tjoi2018]数学计算

    线段树裸题 难度在于认识到这个没法线性做 #include<cstdio> using namespace std; int n,mod,tr[400005]; void insert(i ...

  5. BZOJ5334: [Tjoi2018]数学计算

    BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...

  6. [Tjoi2018]数学计算

    [Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...

  7. [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)

    [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...

  8. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  9. [BZOJ5334][TJOI2018]数学计算(exgcd/线段树)

    模意义下除法若结果仍为整数的话,可以记录模数的所有质因子,计算这些质因子的次幂数,剩余的exgcd解决. $O(n\log n)$但有9的常数(1e9内的数最多有9个不同的质因子),T了. #incl ...

  10. BZOJ5334 [TJOI2018] 数学计算 【线段树分治】

    题目分析: 大概是考场上的签到题.首先mod不是质数,所以不能求逆元.注意到有加入操作和删除操作.一个很典型的想法就是线段树分治.建立时间线段树然后只更改有影响的节点,最后把所有标记下传.时间复杂度是 ...

随机推荐

  1. 20172325 2017-2018-2 《Java程序设计》第十周学习总结

    20172325 2017-2018-2 <Java程序设计>第十周学习总结 教材学习内容总结 1.集合与数据结构 集合是一种对象 集合按照保存类型来看可以分为两种: (1)同构集合:只能 ...

  2. tp5链接访问

    方法名:admin/DayActive/statistic 访问:admin/day_active/statistic

  3. 协议 protocol

    协议声明类需要实现的的方法,为不同的类提供公用方法,一个类可以有多个协议,但只能有一个父类,即单继承.它类似java中的接口. 正式协议(formal protocol)--------------- ...

  4. 2018.10.20 NOIP模拟 面包(数学期望)

    传送门 把方差的式子拆开. 方差=平方的期望-期望的平方. 显然只用维护点对的个数和总方案数就行了. 利用分步的思想来统计. 要统计覆盖一个矩形(x1,y1,x2,y2)(x1,y1,x2,y2)(x ...

  5. 2018.07.10NOIP模拟 Knapsack(单调队列优化dp)

    Knapsack 题目背景 SOURCE:NOIP2016-RZZ-4 T2 题目描述 有 n 个物品,第 i 个物品的重量为 ai . 设 f(i,j,k,l,m) 为满足以下约束的物品集合数量: ...

  6. PyCharm2017破解版安装

    PyCharm2017破解版安装步骤: 1.右击软件压缩包选择解压到pycharm2017. 2.在解压文件夹里面找到pycharm-professional-171.3780.47,右击打开. 3. ...

  7. vs2010 EF4.0 访问mysql

    需要安装mysql-connector-net-6.3.5 6.8.9的安装完后在dbfirst里找不到对应的提供程序 链接字符串里需要 指定下编码(如果不是gbk的话) <add name=& ...

  8. 【转】Paxos算法2-算法过程

    ——转自:{老码农的专栏} 1.编号处理 根据P2c ,proposer在提案前会先咨询acceptor查看其批准的最大的编号和value,再决定提交哪个value.之前我们一直强调更高编号的prop ...

  9. C#和MatLab的混合编程(充分利用二者的优势)

    C#和MatLab的混合编程,充分利用了winform的直观显示和matlab的强大计算能力.在此以一个小例子的形式给大家讲述一下二者混合编程的实现. 一.软件的配置说明 C#版本:VS2010:Ma ...

  10. trsd_extract_EDSD_new

    # -*- coding:utf-8 -*- import re ''' 适应新版本 ''' year='17A'#用户自定义 ss='./data/'#根目录 filename = ss+'EDSD ...