741. Cherry Pickup
In a N x N
grid
representing a field of cherries, each cell is one of three possible integers.
- 0 means the cell is empty, so you can pass through;
- 1 means the cell contains a cherry, that you can pick up and pass through;
- -1 means the cell contains a thorn that blocks your way.
Your task is to collect maximum number of cherries possible by following the rules below:
- Starting at the position (0, 0) and reaching (N-1, N-1) by moving right or down through valid path cells (cells with value 0 or 1);
- After reaching (N-1, N-1), returning to (0, 0) by moving left or up through valid path cells;
- When passing through a path cell containing a cherry, you pick it up and the cell becomes an empty cell (0);
- If there is no valid path between (0, 0) and (N-1, N-1), then no cherries can be collected.
Example 1:
Input: grid =
[[0, 1, -1],
[1, 0, -1],
[1, 1, 1]]
Output: 5
Explanation:
The player started at (0, 0) and went down, down, right right to reach (2, 2).
4 cherries were picked up during this single trip, and the matrix becomes [[0,1,-1],[0,0,-1],[0,0,0]].
Then, the player went left, up, up, left to return home, picking up one more cherry.
The total number of cherries picked up is 5, and this is the maximum possible.
Note:
grid
is anN
byN
2D array, with1 <= N <= 50
.- Each
grid[i][j]
is an integer in the set{-1, 0, 1}
.- It is guaranteed that grid[0][0] and grid[N-1][N-1] are not -1.
Approach#1: DFS + Memory. [C++]
class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int n = grid.size();
grid_ = &grid;
memo = vector<vector<vector<int>>>(n+1, vector<vector<int>>(n+1, vector<int>(n+1, INT_MIN)));
return max(0, dp(n-1, n-1, n-1));
} private:
vector<vector<vector<int>>> memo;
vector<vector<int>> *grid_;
int dp(int x1, int y1, int x2) {
int y2 = x1 + y1 - x2;
if (x1 < 0 || y1 < 0 || x2 < 0 || y2 < 0) return -1;
if ((*grid_)[x1][y1] < 0 || (*grid_)[x2][y2] < 0) return -1;
if (x1 == 0 && y1 == 0) return (*grid_)[x1][y1];
if (memo[x1][y1][x2] != INT_MIN) return memo[x1][y1][x2];
int tmp = max(max(dp(x1-1, y1, x2-1), dp(x1, y1-1, x2)),
max(dp(x1, y1-1, x2-1), dp(x1-1, y1, x2)));
if (tmp < 0) return memo[x1][y1][x2] = -1;
tmp += (*grid_)[x1][y1];
if (x1 != x2) tmp += (*grid_)[x2][y2];
return memo[x1][y1][x2] = tmp;
}
};
Analysis:
Key observation: (0, 0) to (n-1, n-1) to (0, 0) is the same as (n-1, n-1) to (0, 0) twice
Two people starting from (n-1, n-1) and go to (0, 0).
They move one step (left or up) at a time simultaneously. And pick up the cherry within the grid (if there is one).
if they ended up at the same grid with a cherry. Only one of them can pick up it.
x1, y1, x2 to represent a state y2 can be computed: y2 = x1 + y1 - x2.
dp(x1, y1, x2) computes the max cherries if start from {(x1, y1), (x2, y2)} to (0, 0), which is a recursive function.
Since two people move independently, there are 4 subproblems: (left, left), (left, up), (up, left), (left, up). Finally, we have:
dp(x1, y1, x2) = g[y1][x1] + g[y2][x2] + max(dp(x1-1, y1, x2-1), dp(x1, y1-1, x2-1), dp(x1-1, y1, x2), dp(x1, y1-1, x2))
Time complexity: O(n^3)
Space complexity: O(n^3)
Reference:
http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-741-cherry-pickup/
741. Cherry Pickup的更多相关文章
- [LeetCode] 741. Cherry Pickup 捡樱桃
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- LeetCode 741. Cherry Pickup
原题链接在这里:https://leetcode.com/problems/cherry-pickup/ 题目: In a N x N grid representing a field of che ...
- [LeetCode] Cherry Pickup 捡樱桃
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- [Swift]LeetCode741. 摘樱桃 | Cherry Pickup
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- LeetCode741. Cherry Pickup
https://leetcode.com/problems/cherry-pickup/description/ In a N x N grid representing a field of che ...
- 动态规划-Cherry Pickup
2020-02-03 17:46:04 问题描述: 问题求解: 非常好的题目,和two thumb其实非常类似,但是还是有个一点区别,就是本题要求最后要到达(n - 1, n - 1),只有到达了(n ...
- 动态规划Dynamic Programming
动态规划Dynamic Programming code教你做人:DP其实不算是一种算法,而是一种思想/思路,分阶段决策的思路 理解动态规划: 递归与动态规划的联系与区别 -> 记忆化搜索 -& ...
- 矩形最小路径和 · Minimum Path Sum
[抄题]: 给定一个只含非负整数的m*n网格,找到一条从左上角到右下角的可以使数字和最小的路径. [思维问题]: [一句话思路]: 和数字三角形基本相同 [输入量]:空: 正常情况:特大:特小:程序里 ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
随机推荐
- golang实现任务分发处理
package main import ( "flag" "fmt" "os" "log" "net/http ...
- python字典练习
#!/bin/python3.4 # coding=utf-8 class lexicon(object): def __init__(self): print "define a clas ...
- python生成验证码,文字转换为图片-乾颐堂
在58或者赶集等一些网站上经常看到手机号是图片格式,或者一些网站的验证码.这些都是动态生成的,今天我们来看一下如何用python把文字生成图片.其实今天主要借助pygame的图像渲染模块,这样比较简单 ...
- js replace 用法
/g 表示全部 global 在很多项目中,我们经常需要使用JS,在页面前面对前台的某些元素做做修改,js 的replace()方法就必不可少. 经常使用"ABCABCabc". ...
- smrtlink
SMRT Link is the web-based end-to-end workflow manager for the Sequel™ System. It includes software ...
- 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)
3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...
- DOM数据解析
//DOM : Document Object Model ,一种XML解析的方式,先读取整篇的内容,然后再进行解析,解析速度比较快,如果内出现错误,解析就会失败,iOS不支持DOM解析,goole提 ...
- SSH:Struts + Spring + Hibernate 轻量级Java EE企业框架
Java EE(Java Platform,Enterprise Edition)是sun公司(2009年4月20日甲骨文将其收购)推出的企业级应用程序版本.这个版本以前称为 J2EE.能够帮助我们开 ...
- (最长回文串 模板) 最长回文 -- hdu -- 3068
http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others) Memory ...
- Bug中的中的小问题编程需要注意
Bug中的中的小问题编程需要注意 1. 关于局部变量与全局变量是否同名问题 如果参数传递的是一个数组,且全局变量与参数数据同名,则局部变量作用域中,这两个同名的数据可能会引起冲突. 如下:如果一开始是 ...