You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6340    Accepted Submission(s): 3064

Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point.

 
Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the number of intersections, and one line one case.
 
Sample Input
2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
 
Sample Output
1 3
 
Author
lcy
 线段是否相交的判断,采用的石墨板,..
代码:
 #include<stdio.h>
#include<math.h>
const double eps=1e- ;
typedef struct
{
double x,y;
}point; double min(double a, double b)
{
return a<b?a:b;
}
double max(double a,double b)
{
return a>b?a:b;
}
//判断线段是否有焦点
bool inter(point a ,point b, point c ,point d)
{
if(min(a.x,b.x)>max(c.x,d.x)||min(a.y,b.y)>max(c.y,d.y)||
min(c.x,d.x)>max(a.x,b.x)||min(c.y,d.y)>max(a.y,b.y))
return ;
double h,i,j,k;
h=(b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
i=(b.x-a.x)*(d.y-a.y)-(b.y-a.y)*(d.x-a.x);
j=(d.x-c.x)*(a.y-c.y)-(d.y-c.y)*(a.x-c.x);
k=(d.x-c.x)*(b.y-c.y)-(d.y-c.y)*(b.x-c.x);
return h*i<=eps&&j*k<=eps;
};
point st[],en[];
int main()
{
int n,j,i,cnt=;
while(scanf("%d",&n),n)
{
cnt=;
for( i= ; i<n ; i++ )
scanf("%lf%lf%lf%lf",&st[i].x,&st[i].y,&en[i].x,&en[i].y); for( i= ; i<n ; i++ )
{
for(j=i+ ; j<n ;j++ )
{
if(inter(st[i],en[i],st[j],en[j]))
cnt++;
}
}
printf("%d\n",cnt);
}
return ;
}
 

HDUOJ1086You can Solve a Geometry Problem too的更多相关文章

  1. HDU1086You can Solve a Geometry Problem too(判断线段相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  2. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  3. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  4. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  5. You can Solve a Geometry Problem too(判断两线段是否相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. You can Solve a Geometry Problem too(线段求交)

    http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2000 ...

  7. (叉积,线段判交)HDU1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  8. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  9. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

随机推荐

  1. Android 系统服务一览表

    在<Zygote进程[3]--SystemServer的诞生>一文中介绍了SystemServer的诞生,本文来看一下SystemServer中初始化的系统服务. 1.AccountMan ...

  2. 关于SpringCloud微服务架构概念的一点理解

    目前微服务是非常火的架构或者说概念,也是在构建大型互联网项目时采用的架构方式. 1.单体架构单体架构,是指将开发好的项目打成war包,然后发布到tomcat等容器中的应用. 假设你正准备开发一款与Ub ...

  3. 500 OOPS: vsftpd: cannot locate user specified in 'chown_username':whoever

    错误:500 OOPS: vsftpd: cannot locate user specified in 'chown_username':whoever解决方案:在vsftpd.conf中修改如下两 ...

  4. 网站日志访问记录组件UserVisitLogsHelp开源了!

    之前在<一种基于自定义代码记录用户访问日志在Sharepoint网站的应用方法!>一文利用本人几年前的开发的UserVisitLogsHelp组件进行了网站用户访问日志记录,可用于网站分析 ...

  5. C#一个FTP操作封装类FTPHelper

    参考了网上一些代码,作了一些调整优化. 001 using System; 002 using System.Collections.Generic; 003 using System.Linq; 0 ...

  6. 高人对libsvm的经典总结(全面至极)

    ==>转自:http://blog.163.com/crazyzcs@126/blog/static/129742050201061192243911/ http://www.ilovematl ...

  7. wstring to wchar_t*

      If you want to convert from std::wstring to const WCHAR* (i.e. the returned pointer gives read-onl ...

  8. 算法(第四版)学习笔记之java实现希尔排序

    希尔排序思想:使数组中随意间隔为h的元素都是有序的. 希尔排序是插入排序的优化.先对数组局部进行排序,最后再使用插入排序将部分有序的数组排序. 代码例如以下: /** * * @author seab ...

  9. nginx+tomcat+redis完成session共享(转载)

    转载:http://blog.csdn.net/grhlove123/article/details/48047735 tomcat7下基于redis的session共享所需jar包: http:// ...

  10. IE 之 应用小结

    1. 导出收藏夹(IE11) 导出:打开浏览器, 文件(F) → 导入和导出(M)... → 导出到文件(E) → 指定导出内容 → 指定保存路径导入:打开浏览器,文件(F) → 导入和导出(M).. ...