bzoj 3232: 圈地游戏


01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\)

\(\sum A-mid\sum B \geq 0\)

然后把所有的B中的权值乘一个mid再跑一个什么算法就星了

这就是道裸题(雾)

二分一个\(mid\),就是一个网络流问题了

选一个点的集合,如果两个方格相邻,一个选了一个没选,总和就要减去中间这条边的权值

然后用最小鸽,如果选就没有损失,不选有格子上价值的损失;两个相邻点一个选了一个不选有中间那条边边权*mid的损失,裸的最小鸽

还有边界上的边怎么办,就边界外面新建一圈点,强制那些点不选。就做完了。

#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
const double inf=1e9;
int n,m,val[51][51],wh[51][51],ww[51][51];
int dep[3000],fir[3000],head[3000],dis[1000010],nxt[1000010],id;
double w[1000010];
il vd link(int a,int b,double c,double d=0){
nxt[++id]=head[a],head[a]=id,dis[id]=b,w[id]=c;
nxt[++id]=head[b],head[b]=id,dis[id]=a,w[id]=d;
}
int num[52][52],NUM_ID,S,T;
il bool BFS(){
static int que[3000],hd,tl;
hd=tl=0;
que[tl++]=S;for(int i=1;i<=NUM_ID;++i)dep[i]=0;dep[S]=1;
while(hd^tl){
int x=que[hd];
for(int i=head[x];i;i=nxt[i])
if(w[i]>1e-7&&!dep[dis[i]])dep[dis[i]]=dep[x]+1,que[tl++]=dis[i];
++hd;
}
return dep[T];
}
il double Dinic(int x,double maxflow){
if(x==T)return maxflow;
double ret=0;
for(int&i=fir[x];i;i=nxt[i])
if(w[i]>1e-7&&dep[dis[i]]==dep[x]+1){
double d=Dinic(dis[i],std::min(maxflow,w[i]));
w[i]-=d,w[i^1]+=d;ret+=d,maxflow-=d;
if(maxflow<1e-7)return ret;
}
return ret;
}
il double check(double mid){
memset(head,0,sizeof head);id=1;
for(int i=1;i<=m;++i)link(S,num[0][i],inf),link(S,num[n+1][i],inf);
for(int i=1;i<=n;++i)link(S,num[i][0],inf),link(S,num[i][m+1],inf);
double ret=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
link(num[i][j],T,val[i][j]),ret+=val[i][j];
for(int i=1;i<=n+1;++i)
for(int j=1;j<=m;++j)
link(num[i-1][j],num[i][j],mid*wh[i][j],mid*wh[i][j]);
for(int i=1;i<=n;++i)
for(int j=1;j<=m+1;++j)
link(num[i][j-1],num[i][j],mid*ww[i][j],mid*ww[i][j]);
while(BFS())memcpy(fir,head,sizeof fir),ret-=Dinic(S,inf);
return ret;
}
int main(){
n=gi(),m=gi();
for(int i=1;i<=n;++i)for(int j=1;j<=m;++j)val[i][j]=gi();
for(int i=1;i<=n+1;++i)for(int j=1;j<=m;++j)wh[i][j]=gi();
for(int i=1;i<=n;++i)for(int j=1;j<=m+1;++j)ww[i][j]=gi();
for(int i=0;i<=n+1;++i)
for(int j=0;j<=m+1;++j)
num[i][j]=++NUM_ID;
S=++NUM_ID,T=++NUM_ID;
double l=0,r=5000,mid;
while(r-l>1e-6){
mid=(l+r)/2;
if(check(mid)>1e-7)l=mid;
else r=mid;
}
printf("%.3lf\n",l);
return 0;
}


bzoj 3232: 圈地游戏的更多相关文章

  1. BZOJ 3232: 圈地游戏 分数规划+判负环

    3232: 圈地游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 966  Solved: 466[Submit][Status][Discuss] ...

  2. bzoj 3232: 圈地游戏 01分数规划

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ...

  3. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  4. bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...

  5. bzoj 3232: 圈地游戏【分数规划+最小割】

    数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ...

  6. BZOJ3232: 圈地游戏

    题解: 神题一道... 题解戳这里:http://hi.baidu.com/strongoier/item/0425f0e5814e010265db0095 分数规划可以看这里:http://blog ...

  7. 【BZOJ3232】圈地游戏(分数规划,网络流)

    [BZOJ3232]圈地游戏(分数规划,网络流) 题面 BZOJ 题解 很神仙的一道题. 首先看到最大化的比值很容易想到分数规划.现在考虑分数规划之后怎么计算贡献. 首先每条边的贡献就变成了\(mid ...

  8. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  9. 【BZOJ3232】圈地游戏 分数规划+最小割

    [BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...

随机推荐

  1. 使用django的admin的后台管理界面

    django的admin后台管理界面是方便我们对数据库操作的  是一个在浏览器显示的  图形化界面数据库操作 我们先在django中的admin中把我们需要在图形化界面中进行操作的表导入进去: 先把m ...

  2. sql建JOB语句

    declare job_id pls_integer; begin sys.dbms_job.submit(job => job_id, what => 'proc_AGTAWBSTATI ...

  3. Python学习---IO的异步[asyncio +aiohttp模块]

    aiohttp aiohttp是在asyncio模块基础上封装的一个支持HTTP请求的模块,内容比8.4.2[基于asyncio实现利用TCP模拟HTTP请求]更全面 安装aiohttp: pip3 ...

  4. Windows未能启动:0xc00000e9错误

    问题:计算机无法启动,错误代码为:0xc00000e9 解决方法: 1.如报错所示,\Windows\System31\config\system 文件丢失或损坏: 2.如许修复此问题,需在打开此目录 ...

  5. docker 自制CentOS 6-lnp镜像

    环境准备 1台centos 6.5镜像虚拟机  febootstrap.docker febootstrap 安装 yum install -y yum-priorities && r ...

  6. Ardunio控制RGB的LED灯显示彩虹渐变色.

    由于我使用的是共阴极的RGB LED,如果你的是共阳极的,接线的时候要注意一下. 其他没什么不同 //定义RGB色彩的输出I/O ; ; ; //标记颜色变化的方式,增加值还是减小值 bool red ...

  7. WCF自寄宿实现Https绑定

    一.WCF配置 1 Address 将服务端发布地址和客户端访问地址都配置为https开始的安全地址.参考如下. <add key="SrvUrl" value=" ...

  8. HTML5 JS 实现浏览器全屏(F11的效果)

    项目中有需要使用JS来控制浏览器全屏的方法 DEMO地址: http://zhongxia245.github.io/demo/js2fullpanel.html function fullScree ...

  9. Ubuntu eclipse安装

    apt-get install eclipse eclipse-cdt eclipse-jdt  # don't include eclipse if you have it already afte ...

  10. JavaScript验证字符串只能包含数字或者英文字符的代码实例

    验证字符串只能包含数字或者英文字符的代码实例:本章节分享一段代码实例,它实现了验证字符串内容是否只包含英文字符或者数字.代码实例如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...