在深度学习中,我们经常需要用到一些技巧(比如将图片进行旋转,翻转等)来进行data augmentation, 来减少过拟合。 在本文中,我们将主要介绍如何用深度学习框架keras来自动的进行data augmentation。

keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-6,
rotation_range=0.,
width_shift_range=0.,
height_shift_range=0.,
shear_range=0.,
zoom_range=0.,
channel_shift_range=0.,
fill_mode='nearest',
cval=0.,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=K.image_data_format())
  • 生成批次的带实时数据增益的张量图像数据。数据将按批次无限循环。
  • 参数

    • featurewise_center: 布尔值。将输入数据的均值设置为 0,逐特征进行。
    • samplewise_center: 布尔值。将每个样本的均值设置为 0。
    • featurewise_std_normalization: 布尔值。将输入除以数据标准差,逐特征进行。
    • samplewise_std_normalization: 布尔值。将每个输入除以其标准差。
    • zca_epsilon: ZCA 白化的 epsilon 值,默认为 1e-6。
    • zca_whitening: 布尔值。应用 ZCA 白化。
    • rotation_range: 整数。随机旋转的度数范围。
    • width_shift_range: 浮点数(总宽度的比例)。随机水平移动的范围。
    • height_shift_range: 浮点数(总高度的比例)。随机垂直移动的范围。
    • shear_range: 浮点数。剪切强度(以弧度逆时针方向剪切角度)。
    • zoom_range: 浮点数 或 [lower, upper]。随机缩放范围。如果是浮点数,[lower, upper] = [1-zoom_range, 1+zoom_range]
    • channel_shift_range: 浮点数。随机通道转换的范围。
    • fill_mode: {"constant", "nearest", "reflect" or "wrap"} 之一。输入边界以外的点根据给定的模式填充:
      • "constant": kkkkkkkk|abcd|kkkkkkkk (cval=k)
      • "nearest": aaaaaaaa|abcd|dddddddd
      • "reflect": abcddcba|abcd|dcbaabcd
      • "wrap": abcdabcd|abcd|abcdabcd
    • cval: 浮点数或整数。用于边界之外的点的值,当 fill_mode = "constant" 时。
    • horizontal_flip: 布尔值。随机水平翻转。
    • vertical_flip: 布尔值。随机垂直翻转。
    • rescale: 重缩放因子。默认为 None。如果是 None 或 0,不进行缩放,否则将数据乘以所提供的值(在应用任何其他转换之前)。
    • preprocessing_function: 应用于每个输入的函数。这个函数会在任何其他改变之前运行。这个函数需要一个参数:一张图像(秩为 3 的 Numpy 张量),并且应该输出一个同尺寸的 Numpy 张量。
    • data_format: {"channels_first", "channels_last"} 之一。"channels_last" 模式表示输入尺寸应该为 (samples, height, width, channels),"channels_first" 模式表示输入尺寸应该为 (samples, channels, height, width)。默认为 在 Keras 配置文件 ~/.keras/keras.json 中的 image_data_format 值。如果你从未设置它,那它就是 "channels_last"。
       
  • 方法:
  • fit(x): 根据一组样本数据,计算与数据相关转换有关的内部数据统计信息。当且仅当 featurewise_center 或 featurewise_std_normalization 或 zca_whitening 时才需要。
  • flow(x, y): 传入 Numpy 数据和标签数组,生成批次的 增益的/标准化的 数据。在生成的批次数据上无限制地无限次循环。
  • flow_from_directory(directory): 以目录路径为参数,生成批次的 增益的/标准化的 数据。在生成的批次数据上无限制地无限次循环。
from keras.preprocessing.image import ImageDataGenerator,array_to_img,img_to_array,load_img

datagen=ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest'
) img=load_img("test.jpg")
x=img_to_array(img) # 把PIL图像格式转换成numpy格式
x=x.reshape((1,)+x.shape) i=0
for batch in datagen.flow(x,batch_size=2,save_to_dir="datagen",save_prefix="cat",save_format="jpeg"):
i+=1
if i>10:
break

其他注意api:

compile

compile(self, optimizer, loss, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)

用于配置训练模型。

fit

fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)

以固定数量的轮次(数据集上的迭代)训练模型。

fit_generator

fit_generator(self, generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)

使用 Python 生成器逐批生成的数据,按批次训练模型。

evaluate

evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None)

在测试模式下返回模型的误差值和评估标准值。

evaluate_generator

evaluate_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False)

在数据生成器上评估模型。

predict

predict(self, x, batch_size=None, verbose=0, steps=None)

为输入样本生成输出预测。

predict_generator

predict_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)

为来自数据生成器的输入样本生成预测。

Keras Data augmentation(数据扩充)的更多相关文章

  1. keras对图像数据进行增强 | keras data augmentation

    本文首发于个人博客https://kezunlin.me/post/8db507ff/,欢迎阅读最新内容! keras data augmentation Guide code # import th ...

  2. L22 Data Augmentation数据增强

    数据 img2083 链接:https://pan.baidu.com/s/1LIrSH51bUgS-TcgGuCcniw 提取码:m4vq 数据cifar102021 链接:https://pan. ...

  3. 常见的数据扩充(data augmentation)方法

    G~L~M~R~S 一.data augmentation 常见的数据扩充(data augmentation)方法:文中图片均来自吴恩达教授的deeplearning.ai课程 1.Mirrorin ...

  4. 【48】数据扩充(Data augmentation)

    数据扩充(Data augmentation) 大部分的计算机视觉任务使用很多的数据,所以数据扩充是经常使用的一种技巧来提高计算机视觉系统的表现.我认为计算机视觉是一个相当复杂的工作,你需要输入图像的 ...

  5. 深度学习中的Data Augmentation方法(转)基于keras

    在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...

  6. 图像数据增强 (Data Augmentation in Computer Vision)

    1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟 ...

  7. paper 147:Deep Learning -- Face Data Augmentation(一)

    1. 在深度学习中,当数据量不够大时候,常常采用下面4中方法:  (1)人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data ...

  8. Regularizing Deep Networks with Semantic Data Augmentation

    目录 概 主要内容 代码 Wang Y., Huang G., Song S., Pan X., Xia Y. and Wu C. Regularizing Deep Networks with Se ...

  9. 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》

    论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...

随机推荐

  1. CSS 显示或隐藏子元素

    很多时候我们仅仅只是想让鼠标移动入某个元素,然后显示出某个元素. 大多数博客的标题或内容都是:使用CSS实现鼠标悬停在一行上,显示某些元素 很遗憾,这是错误的,鼠标悬停后,尽管CSS标准中有定义此种方 ...

  2. java_String、StringBuilder

    在介绍String和StringBuilder前先学习一下equals方法和toString方法.API java1.6提取码:04b6 equals方法 equals方法,用于比较两个对象是否相同, ...

  3. 虚拟机hadoop集群搭建

    hadoop tar -xvf hadoop-2.7.3.tar.gz mv hadoop-2.7.3 hadoop 在hadoop根目录创建目录 hadoop/hdfs hadoop/hdfs/tm ...

  4. 掩码计算工具netmask

    掩码计算工具netmask   在网络扫描和防火墙配置中,经常需要计算IP地址范围和对应的掩码.为了简化这个过程,Kali Linux预置了一个掩码计算工具netmask.该工具不仅可以根据IP地址范 ...

  5. 神经网络与BP神经网络

    一.神经元 神经元模型是一个包含输入,输出与计算功能的模型.(多个输入对应一个输出) 一个神经网络的训练算法就是让权重(通常用w表示)的值调整到最佳,以使得整个网络的预测效果最好. 事实上,在神经网络 ...

  6. Django-url路由映射与views逻辑处理

    一.URL路由映射 路由映射模块,主要完成url与views视图函数的映射.当一个url请求到来时,会按照这个模块中的url地址从上到下进行匹配,如果匹配成功,将执行映射试图中的函数:反之将返回404 ...

  7. JS Function Arguments

    Function arguments在ECMAScript中的行为并不像其他大多数语言中的函数参数. 在ECMAScript中,function 并不关心有多少个参数传入函数中,也不关心传入参数的数据 ...

  8. [JOISC2014]歴史の研究/[BZOJ4241]历史研究

    [JOISC2014]歴史の研究/[BZOJ4241]历史研究 题目大意: 一个长度为\(n(n\le10^5)\)的数列\(A(A_i\le10^9)\),定义一个元素对一个区间\([l,r]\)的 ...

  9. UVA 10177 Sqr/Rects/Cubes/Boxes?

    Problem J (2/3/4)-D Sqr/Rects/Cubes/Boxes? Input: standard input Output: standard output Time Limit: ...

  10. UVALive 4863 Balloons 贪心/费用流

    There will be several test cases in the input. Each test case will begin with a line with three inte ...