BSUIR Open Finals
A. Game with chocolates
因为差值必须是$P$的幂,故首先可以$O(\log n)$枚举出先手第一步所有取法,判断之后的游戏是否先手必败。
对于判断,首先特判非法的情况,并假设$n<m$,则题意可理解成将$n$或者$m$减小至$n-P^k$,在$P$进制下可以理解为$n$某一位减$1$,且这一位在减之前不能是$0$。
若是将$m$减小为$n-P^k$,则整个游戏都是确定的,回合数为$n$的数位之和,根据奇偶性即可判断胜负。
但若是将$n$减小为$m-P^k$,则要求$n$和$m$位数相同且最高位相等,这意味着进行这步操作后之后不能再进行这一步操作,先手可以利用这一步来使自己必胜。
- #include<cstdio>
- #include<algorithm>
- using namespace std;
- typedef long long ll;
- ll P,n,m,k,a[99],b[99];
- bool check(ll n,ll m){
- if(n>m)swap(n,m);
- ll k=m-n;
- if(m/k%P==0)return 1;
- while(k%P==0)k/=P;
- if(k>1)return 1;
- if(!n)return 0;
- int la=0,lb=0;
- while(n)a[++la]=n%P,n/=P;
- while(m)b[++lb]=m%P,m/=P;
- if(la==lb&&a[la]==b[lb])return 1;
- for(int i=2;i<=la;i++)a[1]+=a[i];
- return a[1]%2;
- }
- int main(){
- scanf("%lld%lld%lld",&P,&n,&m);
- for(k=1;k<=n;k*=P)if(n-k<m)if(!check(n,n-k)){
- puts("YES");
- printf("%lld %lld",n,n-k);
- return 0;
- }
- for(k=1;k<=m;k*=P)if(m-k<n)if(!check(m-k,m)){
- puts("YES");
- printf("%lld %lld",m-k,m);
- return 0;
- }
- puts("NO");
- }
B. Birches
将相同的数合并,然后调和级数$O(n\log n)$枚举即可。
- #include<cstdio>
- const int N=111111;
- int n,m,k,i,j,x,l,r,f[N];long long ans;
- int main(){
- scanf("%d%d",&n,&k);
- while(n--){
- scanf("%d",&x);
- f[x]++;
- }
- n=100000;
- for(i=1;i<=n;i++)if(f[i]&&k<i)
- for(l=k;l<=n;l+=i)ans+=1LL*f[i]*f[l];
- printf("%lld",ans);
- }
C. Ancient CBS
按平方数分解构造。
- #include<stdio.h>
- #include<iostream>
- #include<string.h>
- #include<string>
- #include<ctype.h>
- #include<math.h>
- #include<set>
- #include<map>
- #include<vector>
- #include<queue>
- #include<bitset>
- #include<algorithm>
- #include<time.h>
- using namespace std;
- void fre() { }
- #define MS(x, y) memset(x, y, sizeof(x))
- #define ls o<<1
- #define rs o<<1|1
- typedef long long LL;
- typedef unsigned long long UL;
- typedef unsigned int UI;
- template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
- template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
- const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
- template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
- int casenum, casei;
- int n;
- char s[(int)3e5];
- int h, t;
- void solve(int w, int st)
- {
- for(int i = st; w >= i; ++i)
- {
- s[t++] = '(';
- s[t++] = ')';
- w -= i;
- }
- if(w == 0)return;
- s[--h] = '(';
- s[t++] = ')';
- if(--w == 0)return;
- solve(w, 2);
- }
- int main()
- {
- while(~scanf("%d", &n))
- //for(int x = 1, n = 1e9 - x; x <= 1000000; ++x, --n)
- {
- h = t = 1e5; s[t] = 0;
- solve(n, 1); s[t] = 0;
- puts(s + h);
- /*printf("%d\n", t - h);
- if(t - h > 1e5)
- {
- puts("NO");
- while(1);
- }*/
- }
- return 0;
- }
- /*
- 【trick&&吐槽】
- 【题意】
- 【分析】
- 【时间复杂度&&优化】
- */
D. Interactive lock
爆搜得出方案即可。
- #include<stdio.h>
- #include<iostream>
- #include<string.h>
- #include<string>
- #include<ctype.h>
- #include<math.h>
- #include<set>
- #include<map>
- #include<vector>
- #include<queue>
- #include<bitset>
- #include<algorithm>
- #include<time.h>
- using namespace std;
- void fre() { }
- #define MS(x, y) memset(x, y, sizeof(x))
- #define ls o<<1
- #define rs o<<1|1
- typedef long long LL;
- typedef unsigned long long UL;
- typedef unsigned int UI;
- template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
- template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
- const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
- template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
- int casenum, casei;
- int n;
- int a[100] = {0,
- 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 22, 24, 14, 18, 16, 17, 19, 20, 21, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 78, 44, 45, 46, 47, 48, 49, 50, 51, 100, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 92, 97, 99, 96};
- int top = 96;
- /*
- bool e[N];
- int p[N];
- int v[N];
- void prime()
- {
- int g = 0;
- int k = 0;
- for(int i = 2; i <= 10000; ++i)
- {
- if(!e[i])
- {
- p[++g] = i;
- for(int j = i + i; j <= 10000; j += i)
- {
- e[j] = 1;
- }
- }
- else
- {
- v[++k] = i;
- }
- }
- }
- */
- set<int>can;
- bool dfs(int g, vector<int>rst)
- {
- if(rst.size() == 0)
- {
- puts("bingo");
- printf("%d\n", g - 1);
- for(int i = 1; i < g; ++i)printf("%d, ", a[i]); puts("");
- return 1;
- }
- set<int>::iterator it, nit;
- for(it = can.begin(); it != can.end(); it = nit)
- {
- if(*it > rst.front())return 0;
- vector<int>nxt;
- for(auto x : rst)if(x % *it)
- {
- nxt.push_back(x - *it);
- }
- a[g] = *it;
- nit = it; ++nit;
- can.erase(a[g]);
- if(dfs(g + 1, nxt))return 1;
- can.insert(a[g]);
- }
- /*for(auto it : can)
- {
- if(it > rst.front())return 0;
- vector<int>nxt;
- for(auto x : rst)if(x % it)
- {
- nxt.push_back(x - it);
- }
- a[g] = it;
- can.erase(a[g]);
- if(dfs(g + 1, nxt))return 1;
- can.insert(a[g]);
- }*/
- return 0;
- }
- void solve()
- {
- for(int i = 2; i <= 100; ++i)can.insert(i);
- vector<int>rst;
- for(int i = 100; i <= 10000; ++i)rst.push_back(i);
- dfs(1, rst);
- }
- bool guess(int x)
- {
- for(int i = 1; i <= top; ++i)
- {
- if(a[i] > x)
- {
- printf("%d\n", x);
- return 0;
- }
- if(x % a[i] == 0)return 1;
- x -= a[i];
- }
- return 0;
- }
- int main()
- {
- //prime();
- //solve();
- int T; scanf("%d", &T);
- while(T--)
- {
- for(int i = 1; i <= top; ++i)
- {
- printf("%d\n", a[i]); fflush(stdout);
- char s[10]; scanf("%s", s);
- if(s[0] == 'Y')break;
- }
- }
- /*
- for(int i = 100; i <= 10000; ++i)
- {
- if(!guess(i))
- {
- printf("%d\n", i);
- }
- }
- puts("haha");
- */
- return 0;
- }
- /*
- 【trick&&吐槽】
- 【题意】
- 【分析】
- 【时间复杂度&&优化】
- */
E. Interval divisibility
对于每个约数计算贡献,分段求和即可。
时间复杂度$O(\sqrt{n})$。
- #include<iostream>
- #include<cstdio>
- using namespace std;
- typedef long long ll;
- const ll P=1000000007,inv2=(P+1)/2;
- ll f(ll n){
- n%=P;
- return n*(n+1)%P*inv2%P;
- }
- ll cal(ll n){
- ll ret=0;
- for(ll i=1;i<=n;){
- ll j=n/(n/i);
- ret+=f(n/i)*((i+j)%P)%P*((j-i+1)%P)%P*inv2%P;
- ret%=P;
- i=j+1;
- }
- return ret;
- }
- int main(){
- ll l,r;
- cin>>l>>r;
- ll ans=cal(r)-cal(l-1);
- ans=ans%P;
- ans=ans+P;
- ans%=P;
- cout<<ans;
- }
F. A trick
分类讨论。
- #include<stdio.h>
- #include<iostream>
- #include<string.h>
- #include<string>
- #include<ctype.h>
- #include<math.h>
- #include<set>
- #include<map>
- #include<vector>
- #include<queue>
- #include<bitset>
- #include<algorithm>
- #include<time.h>
- using namespace std;
- void fre() { }
- #define MS(x, y) memset(x, y, sizeof(x))
- #define ls o<<1
- #define rs o<<1|1
- typedef long long LL;
- typedef unsigned long long UL;
- typedef unsigned int UI;
- template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
- template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
- const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
- template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
- int casenum, casei;
- int n;
- int main()
- {
- while(~scanf("%d", &n))
- {
- if(n == 0)
- {
- puts("-1");
- continue;
- }
- int x = n;
- int sum = 0;
- while(x)
- {
- sum += x % 10;
- x /= 10;
- }
- if(sum == 9 * 9)
- {
- puts("-1");
- }
- else
- {
- int tmp1 = sum;
- int v1 = 0;
- while(tmp1)
- {
- int can = min(tmp1, 9);
- tmp1 -= can;
- v1 = v1 * 10 + can;
- }
- int tmp2 = sum;
- int v2 = 0;
- bool flag = 1;
- while(tmp2)
- {
- int can = min(tmp2, 9 - flag);
- flag = 0;
- tmp2 -= can;
- v2 = v2 * 10 + can;
- }
- if(v1 != n)printf("%d\n", v1);
- else if(v2 != n)printf("%d\n", v2);
- else printf("%d0\n", v1);
- }
- }
- return 0;
- }
- /*
- 【trick&&吐槽】
- 【题意】
- 【分析】
- 【时间复杂度&&优化】
- */
G. Highest ratings year
首先求出所有路径长度之和,并直接除以$2$,那么奇数长度的路径会算错,故再算出奇数长度的路径数即可。
时间复杂度$O(n)$。
- #include<cstdio>
- typedef long long ll;
- const int N=100010;
- int n,i,x,y,g[N],v[N<<1],nxt[N<<1],ed;
- int cnt[2],d[N],size[N];
- ll ans;
- inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
- void dfs(int x,int y){
- d[x]=d[y]^1;
- cnt[d[x]]++;
- size[x]=1;
- for(int i=g[x];i;i=nxt[i])if(v[i]!=y){
- dfs(v[i],x);
- size[x]+=size[v[i]];
- ans+=1LL*size[v[i]]*(n-size[v[i]]);
- }
- }
- int main(){
- scanf("%d",&n);
- for(i=1;i<n;i++)scanf("%d%d",&x,&y),add(x,y),add(y,x);
- dfs(1,0);
- ll odd=1LL*cnt[0]*cnt[1];
- ans/=2;
- ans+=odd-odd/2;
- printf("%lld",ans);
- }
H. Spells
设$f[i][j]$表示考虑$S$前$i$个位置,被一路交换过来的字符是$j$能匹配成功的字符串个数,当且仅当$j$和当前字符不相同时才进行转移。
那么转移可以写成矩阵的形式,快速幂计算。
对于矩阵的构造,注意到每次单个字符的转移矩阵与$E$相比只有常数个位置不同,故可以利用这点在$O(26)$时间内计算矩阵乘法。
时间复杂度$O(26\sum|S|+n26^3\log k)$。
- #include<cstdio>
- #include<cstring>
- #define rep(i) for(int i=0;i<N;i++)
- const int N=28,P=1000000007;
- int n,m,K,f[N],g[N][N];char s[10010];
- inline void mul(){
- static int h[N][N];
- rep(i)rep(j)h[i][j]=0;
- rep(i)rep(j)if(g[i][j])rep(k)if(g[j][k])h[i][k]=(1LL*g[i][j]*g[j][k]+h[i][k])%P;
- rep(i)rep(j)g[i][j]=h[i][j];
- }
- inline void apply(){
- static int h[N];
- rep(i){
- h[i]=0;
- rep(j)h[i]=(1LL*g[i][j]*f[j]+h[i])%P;
- }
- rep(i)f[i]=h[i];
- }
- inline void gao(int x){//2..27
- //w[x][0]=1
- //w[x][x]=P-1
- //w[0][1]=1
- //w[0][x]=P-1
- //w[1][x]=P-1
- //w[1][0]=1
- static int h[N][N];
- rep(i){
- h[0][i]=g[0][i];
- h[1][i]=g[1][i];
- h[x][i]=g[x][i];
- }
- rep(i){
- g[x][i]=(h[0][i]+g[x][i])%P;
- g[x][i]=(1LL*(P-1)*h[x][i]+g[x][i])%P;
- g[0][i]=(h[1][i]+g[0][i])%P;
- g[0][i]=(1LL*(P-1)*h[x][i]+g[0][i])%P;
- g[1][i]=(1LL*(P-1)*h[x][i]+g[1][i])%P;
- g[1][i]=(h[0][i]+g[1][i])%P;
- }
- }
- int main(){
- scanf("%d",&n);
- f[0]=1;
- //1:sum = 2+...+27
- while(n--){
- scanf("%s%d",s,&K);
- m=strlen(s);
- rep(i)rep(j)g[i][j]=i==j;
- for(int i=0;i<m;i++)gao(s[i]-'a'+2);
- for(;K;K>>=1,mul())if(K&1)apply();
- }
- printf("%d",f[0]);
- }
- /*
- 7
- a 1
- n 1
- g 1
- n 1
- g 1
- a 1
- n 1
- 6
- a 1
- n 1
- g 1
- n 1
- g 1
- an 1
- */
I. Silver table
$n$的方案为将$n-1$的方案复制后放在上下左右四个地方,并将右上块和左下块全体加$2^k-1$,再将左下块反对角线全体加$2^k-1$得到。
- #include<cstdio>
- const int N=3222;
- int i,j,k,n,f[N][N];
- int main(){
- f[1][1]=1;
- for(i=2;i<=11;i++){
- int len=1<<(i-1);
- int hal=len/2;
- for(j=1;j<=hal;j++)for(k=1;k<=hal;k++){
- f[j+hal][k+hal]=f[j][k];
- f[j+hal][k]=f[j][k+hal]=f[j][k]+len-1;
- }
- for(j=1;j<=hal;j++)f[j+hal][j]+=len-1;
- }
- scanf("%d",&n);
- n=1<<n;
- for(i=1;i<=n;i++){
- for(j=1;j<=n;j++)printf("%d ",f[i][j]);
- puts("");
- }
- }
J. Soldier’s life
问题等价于找两条间距最小的平行线夹住所有点,故求出凸包后枚举每条边求出最远点即可。
- #include<cstdio>
- #include<algorithm>
- #include<set>
- #include<cmath>
- using namespace std;
- typedef double DB;
- const int N=10000;
- const DB eps = 1e-9, pi = acos(-1.0);
- DB ans=1e100;
- int n,m,i;
- struct PT{
- DB x, y;
- PT(DB x = 0, DB y = 0):x(x), y(y){}
- void input(){scanf("%lf%lf", &x, &y);}
- PT operator-(const PT&p)const{return PT(x-p.x,y-p.y);}
- PT operator+(const PT&p)const{return PT(x+p.x,y+p.y);}
- PT operator*(double p)const{return PT(x*p,y*p);}
- PT operator/(double p)const{return PT(x/p,y/p);}
- bool operator < (const PT &p) const{
- if(fabs(x - p.x) > eps) return x < p.x; return y < p.y;}
- void output(){printf("%.15f %.15f\n", x, y);}
- DB len()const{return hypot(x,y);}
- PT rot90()const{return PT(-y,x);}
- PT trunc(double l)const{return (*this)*l/len();}
- }a[N],b[N],c[N],fina,finb,f[N],fin[N];
- DB lim=1e100;
- DB cross(const PT&a,const PT&b){return a.x*b.y-a.y*b.x;}
- DB vect(PT p, PT p1, PT p2){
- return (p1.x - p.x) * (p2.y - p.y) - (p1.y - p.y) * (p2.x - p.x);
- }
- int convex_hull(PT *p, int n, PT *q){
- int i, k, m; sort(p, p + n); m = 0;
- for(i = 0; i < n; q[m++] = p[i++])
- while(m > 1 && vect(q[m - 2], q[m - 1], p[i]) < eps) m --;
- k = m;
- for(i = n - 2; i >= 0; q[m ++] = p[i --])
- while(m > k && vect(q[m - 2], q[m - 1], p[i]) < eps) m --;
- return --m;
- }
- void solve(PT A,PT B){
- DB mx=0;
- for(int i=0;i<n;i++)mx=max(mx,fabs(cross(a[i]-A,B-A)));
- mx/=(B-A).len();
- mx/=2;
- if(mx<ans){
- ans=mx;
- fina=A;
- finb=B;
- }
- }
- PT line_intersection(PT a,PT b,PT p,PT q){
- double U=cross(p-a,q-p),D=cross(b-a,q-p);
- return a+(b-a)*(U/D);
- }
- void gao(PT A,PT B){
- PT fa=A-B;
- fa=fa.rot90();
- DB ret=0;
- for(int i=0;i<n;i++){
- PT C=a[i],D=C+fa;
- PT now=line_intersection(A,B,C,D);
- DB dis=(now-C).len();
- ret=max(ret,dis);
- f[i]=now;
- }
- if(ret<lim){
- lim=ret;
- for(int i=0;i<n;i++)fin[i]=f[i];
- }
- }
- int main(){
- scanf("%d",&n);
- for(i=0;i<n;i++)a[i].input(),b[i]=a[i];
- m=convex_hull(b,n,c);
- for(i=0;i<m;i++)solve(c[i],c[(i+1)%m]);
- PT tmp=finb-fina;
- tmp=tmp.rot90();
- tmp=tmp.trunc(ans);
- gao(fina+tmp,finb+tmp);
- gao(fina-tmp,finb-tmp);
- printf("%.10f\n",lim);
- for(i=0;i<n;i++)fin[i].output();
- }
K. Casino
DP,$f[n][m]$表示还剩$n$张红卡,$m$张黑卡的最大期望收益。
- #include<cstdio>
- #include<algorithm>
- using namespace std;
- const int N=111;
- int n,m;double f[N][N];bool v[N][N];
- double dfs(int n,int m){
- if(!n&&!m)return 0;
- if(v[n][m])return f[n][m];
- v[n][m]=1;
- double ret=0;
- if(n)ret+=(dfs(n-1,m)+1)*n;
- if(m)ret+=(dfs(n,m-1)-1)*m;
- return f[n][m]=max(ret/(n+m),0.0);
- }
- int main(){
- scanf("%d%d",&n,&m);
- printf("%.15f",dfs(n,m));
- }
BSUIR Open Finals的更多相关文章
- HDU-AcmKeHaoWanLe训练实录
菜鸡队训练实录. 现场赛记录:[名称:奖项/排名] 2017: ICPC Shenyang:Gold/3 CCPC Hangzhou:Gold/3 ICPC Beijing:Gold/13 CCPC ...
- Lesnoe Ozero 2016. BSUIR Open 2016 Finals
A. Street magic 数位DP,设$f[i][j][k]$表示从低到高考虑$x$的后$i$位,$x$和$m$大小关系为$j$,和$n$大小关系为$k$的方案数. #include<cs ...
- ACM - ICPC World Finals 2013 F Low Power
原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 问题描述 有n个机器,每个机器有2个芯片,每个 ...
- Codeforces Round #342 (Div. 2) D. Finals in arithmetic 贪心
D. Finals in arithmetic 题目连接: http://www.codeforces.com/contest/625/problem/D Description Vitya is s ...
- ACM - ICPC World Finals 2013 C Surely You Congest
原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 试题来源 ACM/ICPC World Fin ...
- ACM - ICPC World Finals 2013 A Self-Assembly
原题下载 : http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 这道题其实是2013年我AC的第一道题,非常的开心,这 ...
- [ahu 1248] NBA Finals
NBA Finals Time Limit: 1000 ms Case Time Limit: 1000 ms Memory Limit: 64 MBTotal Submission: 251 ...
- [Swust OJ 649]--NBA Finals(dp,后台略(hen)坑)
题目链接:http://acm.swust.edu.cn/problem/649/ Time limit(ms): 1000 Memory limit(kb): 65535 Consider two ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals)
Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) 说一点东西: 昨天晚上$9:05$开始太不好了,我在学校学校$9:40$放 ...
随机推荐
- python14 1.带参装饰器 | wrapper 了了解 # 2.迭代器 ***** # 可迭代对象 # 迭代器对象 # for迭代器 # 枚举对象
## 复习 '''函数的嵌套定义:在函数内部定义另一个函数 闭包:被嵌套的函数 -- 1.外层通过形参给内层函数传参 -- 2.验证执行 开放封闭原则: 功能可以拓展,但源代码与调用方式都不可以改变 ...
- busybox(四)完善
目录 busybox(四)完善 proc挂载 手动挂载 proc解析 使用脚本自动挂载 使用mount-a挂载 udev/mdev 挂载 使用jffs2 文件系统格式 安装zlib 安装jffs2 生 ...
- django - 总结 - 中间件
中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好会影响到性能. MID ...
- A fine property of the non-empty countable dense-in-self set in the real line
A fine property of the non-empty countable dense-in-self set in the real line Zujin Zhang School o ...
- Maven安装及配置
第1部分 准备 1.1 安装JDK和Eclipse: 1.2 下载Maven(https://maven.apache.org/download.cgi) 第2部分 2.1 安装Maven 2.1.1 ...
- UE4渲染笔记
Lightmass 实时渲染光影效果对性能有很大影响,可利用lightmass预先生成光影贴图,然后在游戏中使用. 将场景光照结果完全烘焙到模型贴图上,从而完完全全的假冒现实光照效果. 文档上是 li ...
- C#任务同步
using System; using System.Diagnostics; using System.Threading; using System.Threading.Tasks; using ...
- springMVC源码笔记
springMVC 设计总览 下图来源:https://www.cnblogs.com/fangjian0423/p/springMVC-directory-summary.html 下图来源:htt ...
- Beta冲刺(1/7)
目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:beta冲刺(1/7) 团队部分 后敬甲(组长) 过去两天完成了哪些任务 团队完成测试答辩 整理博客 复习接口 接下来的 ...
- zabbix3.2监控rabbitmq集群
监控模板和脚本github地址:https://github.com/jasonmcintosh/rabbitmq-zabbix/tree/master/scripts/rabbitmq .将rabb ...