HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,是一个关于时序的概率模型,它描述了一个由隐藏的马尔可夫链生成状态序列,再由状态序列生成观测序列的过程。其中,状态之间的转换以及观测序列和状态序列之间都存在一定的概率关系。

任何一个HMM都可以通过下列五元组来描述:

:param obs:观测序列

:param states:隐状态

:param start_p:初始概率(隐状态)

:param trans_p:转移概率(隐状态)

:param emit_p: 发射概率 (隐状态表现为显状态的概率)

而Viterbi算法是解决隐马第三问题(求观察序列的最可能标注序列)。 
算法通过已知的可以观察到的序列,和一些已知的状态转换之间的概率情况,通过综合状态之间的转移概率和前一个状态的情况计算出概率最大的状态转换路径,从而推断出隐含状态的序列的情况。

维基百科动态图表示Viterbi算法过程


一个简单问题

问题描述

隐含的身体状态 = { 健康 , 发烧 }

可观察的感觉状态 = { 正常 , 冷 , 头晕 }

月儿预判的阿驴身体状态的概率分布 = { 健康:0.6 , 发烧: 0.4 }

月儿认为的阿驴身体健康状态的转换概率分布 = {健康->健康: 0.7 ,健康->发烧: 0.3 ,发烧->健康:0.4 ,发烧->发烧: 0.6}

月儿认为的在相应健康状况条件下,阿驴的感觉的概率分布 = {健康,正常:0.5 ,冷 :0.4 ,头晕: 0.1 ;发烧,正常:0.1 ,冷 :0.3 ,头晕: 0.6 }

阿驴连续三天的身体感觉依次是: 正常、冷、头晕 。

利用五元组来描述问题

 states = ('Health', 'Fever')
observations = ('normal', 'cold', 'dizzy')
start_probability = {'Health': 0.6, 'Fever': 0.4}
transition_probability = {
'Health' : {'Health': 0.7, 'Fever': 0.3},
'Fever' : {'Health': 0.4, 'Fever': 0.6},
}
emission_probability = {
'Health' : {'normal': 0.5, 'cold': 0.4, 'dizzy': 0.1},
'Fever' : {'normal': 0.1, 'cold': 0.3, 'dizzy': 0.6},
}

代码实现Viterbi 算法

 import numpy
def Viterbi () :
#已知条件
states = ('Health', 'Fever')
observations = ('normal', 'cold', 'dizzy')
start_probability = {'Health': 0.6, 'Fever': 0.4}
transition_probability = {
'Health' : {'Health': 0.7, 'Fever': 0.3},
'Fever' : {'Health': 0.4, 'Fever': 0.6},
}
emission_probability = {
'Health' : {'normal': 0.5, 'cold': 0.4, 'dizzy': 0.1},
'Fever' : {'normal': 0.1, 'cold': 0.3, 'dizzy': 0.6},
}
day = 3
s = len(states)
V = [] Wether = []
Temp = []
#求解初始状态可能
for j in list(range(s)):
Temp.append(start_probability.get(states[j]) * emission_probability.get(states[j])[observations[0]])
V.append(Temp)
#根据初始状态求解
Wether.append(states[V[0].index(max(V[0]))]); #求解第2 - day 状态转换概率
prob = []
for d in [i + 1 for i in list(range( day - 1))]:
prob = []
pp = -1
for j in list(range(s)):
Temp = []
for k in list(range(s)):
np = V[d-1][j] * transition_probability.get(states[j])[states[k]] * emission_probability.get(states[k])[observations[d]]
Temp.append(np)
#记录路径
if np > pp:
m1 = j
m2 = k
pp = np
prob.append(Temp) print('Compute_Probability:')
print(prob)
Wether.append(states[m2])
V.append(prob[m1])
print('Large_One:')
print(prob[m1]) print(V)
print(Wether) if __name__ == '__main__':
Viterbi()

结果截图

Viterbi algorithm的更多相关文章

  1. 维特比算法(Viterbi Algorithm)

      寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states) 对于一个特殊的隐马尔科夫模型(HMM)及一个相应的观察序列,我们常常希望 ...

  2. HMM——维特比算法(Viterbi algorithm)

    1. 前言维特比算法针对HMM第三个问题,即解码或者预测问题,寻找最可能的隐藏状态序列: 对于一个特殊的隐马尔可夫模型(HMM)及一个相应的观察序列,找到生成此序列最可能的隐藏状态序列. 也就是说给定 ...

  3. HMM Viterbi算法 详解

    HMM:隐式马尔可夫链   HMM的典型介绍就是这个模型是一个五元组: 观测序列(observations):实际观测到的现象序列 隐含状态(states):所有的可能的隐含状态 初始概率(start ...

  4. HMM隐马尔科夫算法(Hidden Markov Algorithm)初探

    1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...

  5. 隐马尔可夫模型(HMM)及Viterbi算法

    HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引 ...

  6. Viterbi算法和隐马尔可夫模型(HMM)算法

    隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那 ...

  7. 维特比算法(Viterbi)

    维特比算法(Viterbi) 维特比算法 编辑 维特比算法是一种动态规划算法用于寻找最有可能产生观测事件序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中.术语“维特比路 ...

  8. Viterbi(维特比)算法在CRF(条件随机场)中是如何起作用的?

    之前我们介绍过BERT+CRF来进行命名实体识别,并对其中的BERT和CRF的概念和作用做了相关的介绍,然对于CRF中的最优的标签序列的计算原理,我们只提到了维特比算法,并没有做进一步的解释,本文将对 ...

  9. 隐马尔可夫模型(HMM)及Viterbi算法

    HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型 ...

随机推荐

  1. 手写代码 - java.util.Arrays 相关

    1-拷贝一个范围内的数组 Arrays.copyOfRange( array, startIndex, endIndex); include startIndex... exclude endInde ...

  2. 让你爱不释手的 Python 模块

     一. logzero 在一个完整的信息系统里面,日志系统是一个非常重要的功能组成部分.它可以记录下系统所产生的所有行为.我们可以使用日志系统所记录的信息为系统进行排错,优化系统的性能,或者根据这些 ...

  3. .NET垃圾回收机制(二)

    一.GC的必要性 1.应用程序对资源操作,通常简单分为以下几个步骤:为对应的资源分配内存 → 初始化内存 → 使用资源 → 清理资源 → 释放内存. 2.应用程序对资源(内存使用)管理的方式,常见的一 ...

  4. python正则表达式--特殊字符

    正则表达式—特殊表达式含义 正则表达式的字母和数字表示他们自身,但多数字母和数字前加一个反斜杠时会拥有不同的含义. 下面列出了正则表达式模式语法中的特殊元素. 1.普通字符集 1)    \w     ...

  5. Python--可迭代对象,迭代器,生成器

    记得在刚开始学Python的时候,看到可迭代对象(iterable).迭代器(iterator)和生成器(generator)这三个名词时,完全懵逼了,根本就不知道是啥意识.现在以自己的理解来详解下这 ...

  6. python学习之Numpy.genfromtxt

    Python 并没有提供数组功能,虽然列表 (list) 可以完成基本的数组功能,但它并不是真正的数组,而且在数据量较大时,使用列表的速度就会慢的让人难受.Numpy 提供了真正的数组功能,以及对数据 ...

  7. 命令制作Mac系统U盘启动

    命令 sudo /Applications/Install\ macOS\ Mojave.app/Contents/Resources/createinstallmedia --volume /Vol ...

  8. 【异常处理】Java异常如何做异常处理

    类似SpringMVC项目的异常处理可以这样做: 整个项目创建全局的: 1.一个自定义异常如OneException和错误码,统一封装所有异常. 2.一个返回实体类ResponseEntity,包含返 ...

  9. 怎么修改PDF文档图片内容

    我们想要修改PDF文件的时候应该怎么做呢,PDF文件不同于其他的文件,PDF文件的编辑需要借助PDF编辑器才能够对文件进行编辑修改,那么要怎么修改PDF文档图片内容呢,有许多的小伙伴都想知道该怎么做, ...

  10. ubuntu的磁盘扩容

    前言:以前项目的人给ubuntu虚拟机分配磁盘空间走的默认,导致后期/根和swap空间跟不上需求,需要扩容 流程如下: 1.先添加块硬盘,命令行输入fdisk -l,会发现多了个/dev/sdb(vd ...