1120 机器人走方格 V3(组合数)
题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可以通过快速幂快速求出。
因为n的数据范围较大,所以要用到卢卡斯定理:若p为素数,那么C(m,n)%p = C(m/p,n/p) * C(m%p,n%p) % p.从而我们可以递归的可以求出C(m,n),当n==0,返回1.
因为方格含有两个三角形,所以Catalan[n]*2 即是最终答案
#include<stdio.h>
#include<math.h>
#include<vector>
#include<stack>
#include<set>
#include<string.h>
#include<iostream>
#include<algorithm>
#define MAXSIZE 10005
#define INF 0x3f3f3f3f
using namespace std;
#define LL long long
const LL mod = 1e4+;
LL inv[mod+]; LL Pow(LL n,LL m)
{
n %= mod;
LL ans = ;
while(m>)
{
if(m%)
ans = (ans*n)%mod;
n = (n*n)%mod;
m /= ;
}
return ans;
} LL C(LL m,LL n) //对mod取模后,m,n的值均小于1e4+7,直接求组合即可
{
if(n > m)
return ;
LL ans = ;
for(int i=; i<=n; i++)
{
ans = ans*(m-i+)%mod*inv[i]%mod;
}
return ans;
} LL Lucas(LL n, LL m) //卢卡斯定理
{
if(m==)
return ;
return Lucas(n/mod,m/mod)%mod*C(n%mod,m%mod)%mod;
} LL Solve(LL n)
{
LL ans = Lucas(*n,n)%mod;
LL Inv = Pow(n+,mod-); //inv(n+1)
ans = ans%mod*Inv%mod;
return ans * % mod;
} int main()
{
for(int i=; i<=mod; i++)
inv[i] = Pow(i,mod-); //预处理求出逆元
LL n;
scanf("%lld",&n);
LL ans = Solve(n-);
printf("%lld\n",ans);
return ;
}
1120 机器人走方格 V3(组合数)的更多相关文章
- 51nod 1120 机器人走方格V3
1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...
- 1120 机器人走方格 V3
1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走, ...
- 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】
-我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...
- 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...
- 51nod 1120 机器人走方格 V3
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...
- 机器人走方格 V3
1120 . 机器人走方格 V3 基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在 ...
- 51nod1120 机器人走方格 V3
跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了.那么就是卡特兰数了.然后由于n和m太大所以用了lucas定理 //跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了 ...
- 51nod_1120:机器人走方格 V3
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 Catalan数 基础题,ans=C(2n-2,n-2 ...
- 51Nod 机器人走方格 V3 —— 卡特兰数、Lucas定理
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 题解: 1.看到这种题,马上就想到了卡特兰数.但卡特兰数 ...
随机推荐
- [SCOI2016]萌萌哒
Luogu P3295 mrclr两周前做的题让蒟蒻的我现在做? 第一眼组合计数,如果把数字相同的数位看作一个整体,除了第一位不能为零,剩下的每一位都有$0$~$9$十种. 设不同的位数为$x$,那么 ...
- SkylineGlobe 7.0.1 & 7.0.2版本Web开发 如何实现对三维模型和地形的剖切展示
现在很多三维项目中,不仅仅要用到三维地形,正射影像和矢量数据,还会融合到各种三维模型,包括传统的3DMax手工建模,BIM,倾斜摄影自动建模,激光点云模型,三维地质体模型等等. 三维平台首先要做的是把 ...
- 在Winform开发框架中使用DevExpress的内置图标资源
在开发Winform程序界面的时候,我们往往会使用一些较好看的图表,以便能够为我们的程序界面增色,良好的图标设置可以让界面看起来更加美观舒服,而且也比较容易理解,图标我们可以通过一些网站获取各种场景的 ...
- 分享:大型Web网站架构演变之9大阶段
前言 我们以Java Web为例,来搭建一个简单的电商系统,看看这个系统可以如何一步步演变. 该系统具备的功能: 用户模块:用户注册和管理 商品模块:商品展示和管理 交易模块:创建交易和管理 正文 阶 ...
- 深入剖析Redis系列:Redis数据结构与全局命令概述
前言 Redis 提供了 5 种数据结构.理解每种数据结构的特点,对于 Redis 的 开发运维 非常重要,同时掌握 Redis 的 单线程命令处理 机制,会使 数据结构 和 命令 的选择事半功倍. ...
- rxjs一句话描述一个操作符(1)
之前一直在写LINQ之类的东西,对于函数式的面向对象还是有一些功底,所以对于rxjs,感觉上不是很难,但是每次看完过几天就忘,还是记一下笔记吧,好记性不如烂笔头真不是盖的. 首先介绍几个重要的概念. ...
- 在IIS上搭建WebSocket服务器(一)
一.搭建环境 1.System.Web.WebSockets需搭建在Windows8及Server2012以上系统的上. 2.在Windows8及Server2012以上系统的上安装IIS和WebSo ...
- webpack+vue 组件间传参(单一事件中心管理组件通信--$root),如果有路由的话会失效
先给一个例子: <body> <div id="box"> <com-a></com-a> <com-b></co ...
- golang函数
一.函数语法 func 函数名(形参列表) (返回值列表){ ...... return 返回值 } 例如: package main import "fmt" func test ...
- H5的段落标签、图片标签、列表标签与链接标签
段落标签 (1)<p>段落标签</p> (2)<nobr>强制不换行标签,会出现滚动条</nobr> (3)<pre>保留原始排版标签< ...