回文树/回文自动机

放链接:

状态数的线性证明

并没有看懂上面的证明,所以自己脑补了一个...

引理: 每一个回文串都是字符串某个前缀的最长回文后缀.

证明. 考虑一个回文串在字符串中第一次出现的位置, 记为 \(S_{p_1 ... p_2}\), 它一定是 \(S_{1 ... p_2}\)的最长回文后缀.

否则, 如果有 \(S_{p_3 ... p_2} (p_3<p_1)\) 也为回文串, 那么由于回文, \(S_{p_3 ... p_3-p_2+p_1} = S_{p_1 ... p_2}\), \(S_{p_1 ... p_2}\)并不是它第一次出现的位置.矛盾.

因而命题得证.

而每个点的最长回文后缀是唯一的, 因此\(S\)最多只有\(|S|\)个不同的回文子串.

引理的推论. 一个回文串 \(\leftrightarrow\) 某个串的最长回文子串 && 某个串的最长回文子串的回文后缀.

关于fail指针

fail指针指向的是一个节点代表的回文串的最长回文后缀.

在build时, 它也可以理解为以某个点为结尾的次长回文后缀.

Code

const int ssz=300050;
ll n;
char s[ssz]; struct te{int l,fail,cnt,ch[27];}tree[ssz]{{0,1},{-1,1}};
int pt=1,rt0=0,rt1=1;
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fail
int newnd(){return ++pt;} int getfail(int p,int i){
while(s[i-1-tree[p].l]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=newnd();
tree[q].l=tree[p].l+2,fail(q)=ch(getfail(fail(p),i),s[i]);
ch(p,s[i])=q;
}
last=ch(p,s[i]);
++tree[last].cnt;
}
}

应用

枚举所有回文子串

dfs即可.

拓扑序

显然拓扑序就是 ${ 1, 2, \cdots, n } $.

求字符串出现次数

加入每个字符后, ++cnt[last];;

然后逆拓扑序dp, cnt[fa(p)] += cnt[p].

cnt[p] 即为回文串 \(p\) 出现次数.

详见下面的题.

每个节点长度 \(\le \frac {len}2\) 的回文后缀

和维护fail指针大体类似, 加上限制条件即可.

详见代码.

其中tree[p].tr表示的是 \(p\) 节点长度 \(\le \frac {len}2\) 的回文后缀

struct tnd{int l,fi,ch[csz],tr;}tree[ssz];
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fi
#define trl(p) tree[p].l
#define trtr(p) tree[p].tr
int rt0=0,rt1=1,pt=1;
int getfail(int p,int i){
while(s[i-1-trl(p)]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=++pt;
trl(q)=trl(p)+2,fail(q)=ch(getfail(fail(p),i),s[i]);
//get tr(p) start
if(trl(q)<=1)trtr(q)=fail(q);
else{
int z=trtr(p);
while(s[i-1-trl(z)]!=s[i]||(trl(z)+2)*2>trl(q))z=fail(z);
trtr(q)=ch(z,s[i]);
}
//end
ch(p,s[i])=q;
}
last=ch(p,s[i]);
}
}

例题

BZOJ3676:[Apio2014]回文串

求回文串长度*出现次数的最大值.

板子题.

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll; //---------------------------------------
const int ssz=300050;
ll n,ans=0;
char s[ssz]; struct te{int l,fail,cnt,ch[27];}tree[ssz]{{0,1},{-1,1}};
int pt=1,rt0=0,rt1=1;
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fail
int newnd(){return ++pt;} int getfail(int p,int i){
while(s[i-1-tree[p].l]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=newnd();
tree[q].l=tree[p].l+2,fail(q)=ch(getfail(fail(p),i),s[i]);
ch(p,s[i])=q;
}
last=ch(p,s[i]);
++tree[last].cnt;
}
} int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>(s+1);
n=strlen(s+1);
rep(i,1,n)s[i]-='a'-1;
build();
repdo(i,pt,2){
tree[fail(i)].cnt+=tree[i].cnt;
ans=max(ans,(ll)tree[i].cnt*tree[i].l);
}
cout<<ans<<'\n';
return 0;
}

[模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串的更多相关文章

  1. bzoj3676 [Apio2014]回文串 卡常+SAM+树上倍增

    bzoj3676 [Apio2014]回文串 SAM+树上倍增 链接 bzoj luogu 思路 根据manacher可以知道,每次暴力扩展才有可能出现新的回文串. 所以推出本质不同的回文串个数是O( ...

  2. [Bzoj3676][Apio2014]回文串(后缀自动机)(parent树)(倍增)

    3676: [Apio2014]回文串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 3396  Solved: 1568[Submit][Statu ...

  3. [BZOJ3676][APIO2014]回文串(Manacher+SAM)

    3676: [Apio2014]回文串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 3097  Solved: 1408[Submit][Statu ...

  4. HDU - 5157 :Harry and magic string (回文树,求多少对不相交的回文串)

    Sample Input aca aaaa Sample Output 3 15 题意: 多组输入,每次给定字符串S(|S|<1e5),求多少对不相交的回文串. 思路:可以用回文树求出以每个位置 ...

  5. HDU5658:CA Loves Palindromic (回文树,求区间本质不同的回文串数)

    CA loves strings, especially loves the palindrome strings. One day he gets a string, he wants to kno ...

  6. bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...

  7. 【回文自动机】bzoj3676 [Apio2014]回文串

    回文自动机讲解!http://blog.csdn.net/u013368721/article/details/42100363 pam上每个点代表本质不同的回文子串.len(i)代表长度,cnt(i ...

  8. BZOJ3676[Apio2014]回文串——回文自动机

    题目描述 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. 输入 输入只有一行,为一个只包含小写字 ...

  9. BZOJ3676 APIO2014回文串(manacher+后缀自动机)

    由于本质不同的回文子串数量是O(n)的,考虑在对于每个回文子串在第一次找到它时对其暴力统计.可以发现manacher时若右端点移动则找到了一个新回文串.注意这样会漏掉串长为1的情况,特判一下. 现在问 ...

随机推荐

  1. z-tree 回显所有选中的id

    //回显选择的checkbox函数 function treeHxIdFun(obj) { var objTree = $.fn.zTree.init($("#demo"), se ...

  2. vue 路由的使用

    ue-router是Vue.js官方的路由插件,它和vue.js是深度集成的,适合用于构建单页面应用.vue的单页面应用是基于路由和组件的,路由用于设定访问路径,并将路径和组件映射起来.传统的页面应用 ...

  3. 关于JPasswordField的getText()方法过时问题解决

    这几天想做一个登陆界面,用Jframe做,连接数据库时发现JPasswordField的getText()过时了,没法使用.查了资料发现改成了: try{ String sql="SELEC ...

  4. 免费试用MongoDB云数据库 (MongoDB Atlas)教程

    众所周知,MongoDB包括社区版和企业版,但不止如此,MongoDB公司还有MongoDB Atlas:Database as a Service. MongoDB Atlas delivers t ...

  5. Android PAI (PlayAutoInstall)预装APK 功能

    最近刚找到工作,是手机方案公司,刚接触手机系统预装的APP,以及解决方案MTK平台下预装APP的bug,也接触到了Launcher的东西. 然后接触到了第一个需求 PAI预装APK功能 下面是我用到的 ...

  6. windows/Linux下的程序员文档浏览工具

    Dash + Alfred https://www.jianshu.com/p/77d2bf8df81f 对于程序员来说,查看api文档是非常频繁,经常窗口之间切换非常麻烦,mac下就有一个查文档的神 ...

  7. 虚拟机安装macos 分辨率不正常修改不了,不能全屏如何解决

    1.苹果在OSX 10.11之后启动了一个System Integrity Protection (SIP),这个保护系统防止/library/preferences/systemconfigurat ...

  8. 目录命令(dir)

    DIR 命令: // 描述: (Directory) 显示目录的文件和子目录的列表. // 语法: dir [<Drive>:][<Path>][<FileName> ...

  9. 【PAT】B1016 部分A+B

    水题 以字符和字符串形式储存输入,比较,计算出两个个数的D的个数,用for循环拼成P,相加得出结果 #include<stdio.h> int main(){ char A[20],DA, ...

  10. CentOS7.2重置root密码的处理方法

    第一个里程碑 --在启动GRUB菜单中选择编辑选项,按键 "e" 进入编辑; 第二个里程碑 -- 大约在第16行找到 "ro" 将 "ro" ...