[物理学与PDEs]第2章习题13 将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组
试引进新的未知函数, 将 $p$ - 方程组 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p }{\p x}p(\tau)&=F. \eea \eeex$$ 化为守恒律形式的一阶拟线性对称双曲组. 这里假定 $p'(\tau)<0$.
解答: 由于流场是均熵流, 而 $$\bex \rd e=-p\rd \tau. \eex$$ 取 $$\bex W=e+\cfrac{u^2}{2}, \eex$$ 则 $$\bex \cfrac{\p W}{\p t} =-p\cfrac{\p \tau}{\p t} +u\cfrac{\p u}{\p t} =-p\cfrac{\p u}{\p x} +u\cdot\sex{-\cfrac{\p p}{\p x}} =-\cfrac{\p}{\p x}(pu). \eex$$ 由于 $W$ 关于 $\tau,u$ 的 Hessian $$\bex \sex{\ba{cc} -p'(\tau)&0\\ 0&1 \ea} \eex$$ 是正定的, 我们可据定理 1. 1 (书 P 96) 及其证明知, 通过未知函数变换 $$\bex v_0=\cfrac{\p W}{\p \tau}=-p,\quad v_1=\cfrac{\p W}{\p u}=u, \eex$$ 可将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组 $$\bex \cfrac{\p L^0_{v_i}}{\p t}+\cfrac{\p}{\p x}L^1_{v_i}=0,\quad i=0,1, \eex$$ 其中 $$\beex \bea L^0&=-p\tau +u^2-\sex{e+\cfrac{u^2}{2}} =-p\tau -e+\cfrac{u^2}{2},\\ L^1&=(-p)\cdot (-u)+up -pu=pu. \eea \eeex$$ 于是所求为 $$\beex \bea \cfrac{\p }{\p t}[-p'(\tau)\tau]+\cfrac{\p}{\p x}[p'(\tau)u]&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p}{\p x}p(\tau)&=0. \eea \eeex$$
[物理学与PDEs]第2章习题13 将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组的更多相关文章
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第1章习题13 静磁场的矢势在媒质交界面上的条件
试讨论对静磁场的矢势, 如何决定其在媒质交界面上的条件. 解答: 由 $\rot{\bf A}={\bf B}$ 知 $$\bex \oint_l {\bf A}\cdot\rd {\bf l} =\ ...
- [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式. 证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\s ...
- [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式. 证明: 注意到 $$\beex \bea \c ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
随机推荐
- 5.机器学习——DBSCAN聚类算法
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类: (2)与K-MEANS比较起来,不需要输入要划分的聚类个数: (3)聚类簇的形状没有偏倚: (4)可以在需要时输入过 ...
- Kubernetes - kubectl proxy
最近在玩flink部署在k8s上,但是k8s以前没玩过,参照前几天写的文章可部署一个简单的k8shttps://www.cnblogs.com/felixzh/p/9726244.html 在参照fl ...
- kafka-rest:怎么愉快的build?
愉快的build该项目吧 git clone https://github.com/confluentinc/kafka-restmvn clean install -Dmaven.test.skip ...
- 一本通 1223:An Easy Problem
\[传送门qwq\] [题目描述] 给定一个正整数N,求最小的.比N大的正整数M,使得M与N的二进制表示中有相同数目的1. 举个例子,假如给定的N为78,其二进制表示为1001110,包含4个1,那么 ...
- DSP到底是个什么鬼?看完你就懂了
DSP 即数字信号处理技术, DSP 芯片即指能够实现数字信号处理技术的芯片. DSP芯片是一种快速强大的微处理器,独特之处在于它能即时处理资料. DSP 芯片的内部采用程序和数据分开的哈佛结构,具有 ...
- UML 教程
UML 教程 关键词:部署图, 组件图, 包图, 类图, 复合结构图, 对象图, 活动图, 状态机图, 用例图, 通信图, 交互概述图, 时序图, 时间图 简介 部署图 组件图 包图 类图 复合结构图 ...
- Spring+SpringMVC+Hibernate小案例(实现Spring对Hibernate的事务管理)
原文地址:https://blog.csdn.net/jiegegeaa1/article/details/81975286 一.工作环境 编辑器用的是MyEclipse,用Mysql数据库,mave ...
- すぬけ君の塗り絵 / Snuke's Coloring AtCoder - 2068 (思维,排序,贡献)
Problem Statement We have a grid with H rows and W columns. At first, all cells were painted white. ...
- DAY11、函数总结
一.函数的对象 1.函数对象:函数名存放的就是函数的地址,所以函数名也是对像 2.函数对象的应用: 2.1.可以直接被引用 fn = cp_fn 2.2.可以当作函数参数传递 compute ...
- 【XSY3156】简单计数II 容斥 DP
题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) ...