试引进新的未知函数, 将 $p$ - 方程组 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p }{\p x}p(\tau)&=F. \eea \eeex$$ 化为守恒律形式的一阶拟线性对称双曲组. 这里假定 $p'(\tau)<0$.

解答: 由于流场是均熵流, 而 $$\bex \rd e=-p\rd \tau. \eex$$ 取 $$\bex W=e+\cfrac{u^2}{2}, \eex$$ 则 $$\bex \cfrac{\p W}{\p t} =-p\cfrac{\p \tau}{\p t} +u\cfrac{\p u}{\p t} =-p\cfrac{\p u}{\p x} +u\cdot\sex{-\cfrac{\p p}{\p x}} =-\cfrac{\p}{\p x}(pu). \eex$$ 由于 $W$ 关于 $\tau,u$ 的 Hessian $$\bex \sex{\ba{cc} -p'(\tau)&0\\ 0&1 \ea} \eex$$ 是正定的, 我们可据定理 1. 1 (书 P 96) 及其证明知, 通过未知函数变换 $$\bex v_0=\cfrac{\p W}{\p \tau}=-p,\quad v_1=\cfrac{\p W}{\p u}=u, \eex$$ 可将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组 $$\bex \cfrac{\p L^0_{v_i}}{\p t}+\cfrac{\p}{\p x}L^1_{v_i}=0,\quad i=0,1, \eex$$ 其中 $$\beex \bea L^0&=-p\tau +u^2-\sex{e+\cfrac{u^2}{2}} =-p\tau -e+\cfrac{u^2}{2},\\ L^1&=(-p)\cdot (-u)+up -pu=pu. \eea \eeex$$ 于是所求为 $$\beex \bea \cfrac{\p }{\p t}[-p'(\tau)\tau]+\cfrac{\p}{\p x}[p'(\tau)u]&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p}{\p x}p(\tau)&=0. \eea \eeex$$

[物理学与PDEs]第2章习题13 将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组的更多相关文章

  1. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  2. [物理学与PDEs]第1章习题13 静磁场的矢势在媒质交界面上的条件

    试讨论对静磁场的矢势, 如何决定其在媒质交界面上的条件. 解答: 由 $\rot{\bf A}={\bf B}$ 知 $$\bex \oint_l {\bf A}\cdot\rd {\bf l} =\ ...

  3. [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程

    试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式. 证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\s ...

  4. [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程

    试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式. 证明: 注意到 $$\beex \bea \c ...

  5. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  6. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  7. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  8. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  9. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

随机推荐

  1. [已决解]关于Hadoop start-all.sh启动问题

    问题一:出现Attempting to operate on hdfs namenode as root 写在最前注意: 1.master,slave都需要修改start-dfs.sh,stop-df ...

  2. Linux实战教学笔记51:Zabbix监控平台3.2.4(三)生产环境案例

    https://www.cnblogs.com/chensiqiqi/p/9162986.html 一,Zabbix生产环境监测案例概述 1.1 项目规划 [x] :主机分组 交换机 Nginx To ...

  3. PuTTY 串口调试,为普通用户增加访问串口设备权限

    一般情况下,只有 root 用户可以使用 PuTTY 访问串口设备,如果要为普通用户增加访问串口设备的权限,可按如下步骤进行: (以 Ubuntu 14.04.3 系统为例,第一个串口设备,会被识别为 ...

  4. cpu_ops、suspend_ops、arm_idle_driver以及machine_restart/machine_power_off到底层PSCI Firmware分析

    在内核中针对的cpu的操作,比如arm_cpuidle_init.arm_cpuidle_suspend.boot_secondary.secondary_start_kernel.op_cpu_di ...

  5. Golang 入门系列(六)理解Go中的协程(Goroutine)

    前面讲的都是一些Go 语言的基础知识,感兴趣的朋友可以先看看之前的文章.https://www.cnblogs.com/zhangweizhong/category/1275863.html. 今天就 ...

  6. 基于 HTML5 的 3D 工业互联网展示方案

    前言 通用电气(GE).IBM.英特尔等公司主推的“工业互联网”正在经历“产品-数据分析平台-应用-生态”的演进.这主要得益于 Predix 数据分析平台对工业互联网应用的整合能力.Predix 就像 ...

  7. 轻量级ORM框架 Bankinate

    [前言] 前面讲过ORM的前世今生,对ORM框架不了解的朋友可以参考博文:https://www.cnblogs.com/7tiny/p/9551754.html 今天,我们主要通过设计一款轻量级的O ...

  8. html2canvas截屏在H5微信移动端踩坑,ios和安卓均可显示

    1.最近在做移动端开发,框架是vue,一产品需求是,后台返回数据,通过qrcode.js(代码比较简单,百度上已经很多了)生成二维码,然后通过html2canvas,将html元素转化为canvas, ...

  9. 软件工程(FZU2015) 赛季得分榜,第一回合

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...

  10. 第二部分之RDB持久化(第十章)

    RDB持久化功能所生成的RDB文件是一个经过压缩的二进制文件,通过该文件可以还原生成RDB文件时的数据库状态.(数据库状态:服务器中的非空数据库以及它们的键值对统称为数据库状态) 一.RDB文件的创建 ...