[Luogu P4180][BJWC 2010]严格次小生成树
严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行。原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的次小生成树。然而是严格的QAQ,于是得搞点别的东西来实现“严格”,维护个次大值就行。依次枚举每条边,如果这条边和加上这条边构成的环中最大的边边权相等,取次大值,否则取最大值。
参考代码:
#include<cstdio>
#include<algorithm>
#define ll long long
#include<iostream>
#define A(x) cout << #x << " " << x << endl;
#define qwq 900100
const ll inf = ;
using namespace std;
struct Node
{
ll u,v,val,nxt;
bool used;
} a[ * qwq],b[ * qwq];
ll head[qwq];
ll f[qwq];
ll find(ll x) {
if(x == f[x]) return x;
return f[x] = find(f[x]);
}
ll n,m,cnt;
void add(ll u,ll v,ll w) {
cnt++;
b[cnt].nxt = head[u];
head[u] = cnt;
b[cnt].val = w;
b[cnt].v = v;
}
bool cmp(Node a,Node b) {
return a.val < b.val;
}
ll ans = 0ll;
void kruskal() {
ll k = ;
for(ll i = ; i <= n; i++) f[i] = i;
for(ll i = ; i <= m; i++)
{
ll f1 = find(a[i].u);
ll f2 = find(a[i].v);
if(f1 != f2) {
f[f1] = f2;
k++;
ans += a[i].val;
add(a[i].u,a[i].v,a[i].val);
add(a[i].v,a[i].u,a[i].val);
a[i].used = ;
if(k == n - ) break;
}
}
}
ll fa[qwq][],dep[qwq];
ll maxx[qwq][],lmax[qwq][];
void dfs(ll u,ll pa) {
fa[u][] = pa;
for(int i = head[u]; i; i = b[i].nxt) {
ll v = b[i].v;
if(v == pa) continue;
dep[v] = dep[u] + 1ll;
maxx[v][] = b[i].val;
lmax[v][] = -inf;
dfs(v,u);
}
}
void max_set() {
for(ll i = ; i <= ; i++)
for(ll u = ; u <= n; u++) {
fa[u][i] = fa[fa[u][i - ]][i - ];
maxx[u][i] = max(maxx[u][i - ],maxx[fa[u][i - ]][i - ]);
lmax[u][i] = max(lmax[u][i - ],lmax[fa[u][i - ]][i - ]);
if(maxx[u][i - ] > maxx[fa[u][i - ]][i - ])
lmax[u][i] = max(lmax[u][i],maxx[fa[u][i - ]][i - ]);
else if(maxx[u][i - ] < maxx[fa[u][i - ]][i - ])
lmax[u][i] = max(lmax[u][i],maxx[u][i - ]);
}
}
ll lca(ll x,ll y) {
if(dep[x] < dep[y]) swap(x,y);
for(ll i = ; i >= ; i--)
if(dep[fa[x][i]] >= dep[y])
x = fa[x][i];
if(x == y) return x;
for(ll i = ; i >= ; i--)
if(fa[x][i] ^ fa[y][i]) {
x = fa[x][i];
y = fa[y][i];
}
return fa[x][];
}
ll find_max(ll u,ll v,ll qaq) {
ll Ans = -inf;
for(ll i = ; i >= ; i--) {
if(dep[fa[u][i]] >= dep[v]) {
if(qaq != maxx[u][i])Ans = max(Ans,maxx[u][i]);
else Ans = max(Ans,lmax[u][i]);
u = fa[u][i];
}
}
return Ans;
}
int main()
{
scanf("%lld %lld",&n,&m);
for(ll i = ;i <= m;i++)
{
scanf("%lld %lld %lld",&a[i].u,&a[i].v,&a[i].val);
}
sort(a + ,a + + m,cmp);
kruskal();
lmax[][] = -inf;
dep[] = 1ll;
dfs(,-);
max_set();
ll answ = inf;
for(ll i = ; i <= m; i++)
{
if(!a[i].used)
{
ll u = a[i].u;
ll v = a[i].v;
ll d = a[i].val;
ll Lca = lca(u,v);
ll maxu = find_max(u,Lca,d);
ll maxv = find_max(v,Lca,d);
answ = min(answ,ans - max(maxu,maxv) + d);
}
}
printf("%lld",answ);
}
[Luogu P4180][BJWC 2010]严格次小生成树的更多相关文章
- 【Beijing 2010】 次小生成树
[题目链接] 点击打开链接 [算法] 首先,有一个结论 : 一定有一棵严格次小生成树是在最小生成树的基础上去掉一条边,再加上一条边 这个结论的正确性是显然的 我们先用kruskal算法求出最小生成树, ...
- 【luogu P4180 严格次小生成树[BJWC2010]】 模板
题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 ...
- Luogu P4180 【模板】严格次小生成树[BJWC2010]
P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得 ...
- 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...
- [Luogu] 次小生成树
https://www.luogu.org/problemnew/show/P4180#sub 严格次小生成树,即不等于最小生成树中的边权之和最小的生成树 首先求出最小生成树,然后枚举所有不在最小生成 ...
- P4180 【模板】严格次小生成树[BJWC2010]
P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删 ...
- 洛谷P4180【Beijing2010组队】次小生成树Tree
题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还 ...
- P4180 [BJWC2010]严格次小生成树
P4180 [BJWC2010]严格次小生成树 P4180 题意 求出一个无向联通图的严格次小生成树.严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
随机推荐
- PowerShell执行脚本时“系统上禁止运行脚本”问题解决
PowerShell执行脚本策略错误 错误信息:PowerShell运行脚本错误--"系统上禁止运行脚本" 原因:默认执行策略为Restricted 解决:执行Set-Execut ...
- 周末班:Python基础之面向对象进阶
面向对象进阶 类型判断 issubclass 首先,我们先看issubclass() 这个内置函数可以帮我们判断x类是否是y类型的子类. class Base: pass class Foo(Base ...
- echarts堆叠图添加总量
echarts在使用中往往会遇到需要展示总量信息的情况,比较典型的就是3维统计的堆叠柱状图 堆叠是在柱状图的基础上,给几项设置同一stack来实现的.不考虑在tips中实现总和,有两种方式可以实现总和 ...
- threejs学习笔记(一)
得到webgl的渲染管线
- day14- 面向对象基础(一)
今天开始写关于面向对象的内容,面向对象是编程思想中一大思想,由于日常使用中经常会用到,本次主要是对于我个人认为重点的基础知识进行整理,不会特别详细的书写. 1.面向过程与面向对象的区别 2.类 3.类 ...
- php 表单提交大量数据发生丢失的解决方法
最近在项目中,出现一个奇怪的现象,有一个大form里面有上千个input,提交的时候,老是发现post过来的数据不完整,一开始还怀疑是html 表单名称有冲突,排除掉了.然后,网上找了一堆,php.i ...
- python小白——进阶之路——day2天-———变量的缓存机制+自动类型转换
# ###同一文件,变量的缓存机制 ''' -->Number 部分 1.对于整型而言,-5~正无穷范围内的相同值 id一致 2.对于浮点数而言,非负数范围内的相同值 id一致 3.布尔值而言, ...
- 洛谷 P1049 装箱问题
\[传送门在这呢!!\] 题目描述 有一个箱子容量为\(V\)(正整数,\(0 \le V \le 20000\)),同时有\(n\)个物品(\(0<n \le 30\),每个物品有一个体积(正 ...
- WebApi的自定义Filter
using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using Syst ...
- odoo学习
odoo视图对应模型:model="ir.ui.view"> <record id="mrp_workcenter_view_light_inherit&qu ...