【LOJ2586】【APIO2018】选圆圈 CDQ分治 扫描线 平衡树
题目描述
在平面上,有 \(n\) 个圆,记为 \(c_1,c_2,\ldots,c_n\) 。我们尝试对这些圆运行这个算法:
- 找到这些圆中半径最大的。如果有多个半径最大的圆,选择编号最小的。记为 \(c_i\) 。
- 删除 \(c_i\) 及与其有交集的所有圆。两个圆有交集当且仅当平面上存在一个点,这个点同时在这两个圆的圆周上或圆内。(原文直译:如果平面上存在一个点被这两个圆所包含,我们称这两个圆有交集。一个点被一个圆包含,当且仅当它位于圆内或圆周上。)
- 重复上面两个步骤直到所有的圆都被删除。
当 \(c_i\) 被删除时,若循环中第1步选择的圆是 \(c_j\) ,我们说 \(c_i\) 被 \(c_j\) 删除。对于每个圆,求出它是被哪一个圆删除的。
\(n\leq 300000\)
题解
貌似不太好枚举每个圆,找出剩下的和这个圆相交的圆。
那就换一种思路。
枚举每个圆 \(i\),找出第一个与这个圆相交且是作为最大的圆被删掉的圆。
前面的作为最大的圆被删掉的圆肯定是两两不相交的,且半径大于圆 \(c_i\)。
那么我们可以对前面的圆维护扫描线,每个圆和当前的直线 \(x=x_0\) 相交两次,可以用括号表示 。
而且由于这些圆两两不相交,括号相对次序不会变。
由于前面的圆半径都比它大,因此和它有交的圆必然经过 \(x=x_i+r_i\) 或 \(x=x_i-r_i\) 或 \(y=y_i-r_i\) 或 \(y=y_i+r_i\)。
所以我们可以在做扫描线时,查询这四个位置的平衡树上,当前圆的前驱后继。
但是这道题有很多个询问。
那就加上一个CDQ分治咯。
时间复杂度:\(O(n\log^2n)\)
实际上跑的比 k-d tree 还慢很多倍。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<set>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c,b=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c=='-')
{
c=getchar();
b=1;
}
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return b?-s:s;
}
void put(int x)
{
if(!x)
{
putchar('0');
return;
}
static int c[20];
int t=0;
while(x)
{
c[++t]=x%10;
x/=10;
}
while(t)
putchar(c[t--]+'0');
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
const int N=300010;
const int inf=0x7f7f7f7f;
struct circle
{
ll x,y,r;
int id;
};
struct event
{
ll t;
int op;
int v;
event(){}
event(ll a,int b,int c)
{
t=a;
op=b;
v=c;
}
};
int cmp(circle a,circle b)
{
if(a.r!=b.r)
return a.r>b.r;
return a.id<b.id;
}
int cmp2(event a,event b)
{
return a.t<b.t;
}
int n;
circle a[N];
int ans[N];
int final[N];
int b[N];
int m;
event c[2*N];
set<pii> s;
int inter(int x,int y)
{
return (a[x].x-a[y].x)*(a[x].x-a[y].x)+(a[x].y-a[y].y)*(a[x].y-a[y].y)<=(a[x].r+a[y].r)*(a[x].r+a[y].r);
}
void solve(int l,int r)
{
if(l==r)
{
if(ans[l]==inf)
{
ans[l]=l;
b[l]=1;
}
return;
}
int mid=(l+r)>>1;
solve(l,mid);
m=0;
for(int i=l;i<=mid;i++)
if(b[i])
{
c[++m]=event(3*(a[i].x-a[i].r)-2,1,i);
c[++m]=event(3*(a[i].x+a[i].r),2,i);
}
for(int i=mid+1;i<=r;i++)
{
c[++m]=event(3*(a[i].x-a[i].r)-1,3,i);
c[++m]=event(3*(a[i].x+a[i].r)-1,3,i);
}
sort(c+1,c+m+1,cmp2);
for(int i=1;i<=m;i++)
if(c[i].op==1)
s.insert(pii(a[c[i].v].y,c[i].v));
else if(c[i].op==2)
s.erase(pii(a[c[i].v].y,c[i].v));
else
{
auto it=s.lower_bound(pii(a[c[i].v].y,0));
if(it!=s.end())
{
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
if(it!=s.begin())
{
it--;
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
}
m=0;
for(int i=l;i<=mid;i++)
if(b[i])
{
c[++m]=event(3*(a[i].y-a[i].r)-2,1,i);
c[++m]=event(3*(a[i].y+a[i].r),2,i);
}
for(int i=mid+1;i<=r;i++)
{
c[++m]=event(3*(a[i].y-a[i].r)-1,3,i);
c[++m]=event(3*(a[i].y+a[i].r)-1,3,i);
}
sort(c+1,c+m+1,cmp2);
for(int i=1;i<=m;i++)
if(c[i].op==1)
s.insert(pii(a[c[i].v].x,c[i].v));
else if(c[i].op==2)
s.erase(pii(a[c[i].v].x,c[i].v));
else
{
auto it=s.lower_bound(pii(a[c[i].v].x,0));
if(it!=s.end())
{
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
if(it!=s.begin())
{
it--;
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
}
solve(mid+1,r);
}
int main()
{
open("circle");
scanf("%d",&n);
ll minx=0x7fffffff,miny=0x7fffffff;
for(int i=1;i<=n;i++)
{
// scanf("%lld%lld%lld",&a[i].x,&a[i].y,&a[i].r);
a[i].x=rd();
a[i].y=rd();
a[i].r=rd();
a[i].id=i;
minx=min(minx,a[i].x);
miny=min(miny,a[i].y);
}
for(int i=1;i<=n;i++)
{
a[i].x=a[i].x-minx+1;
a[i].y=a[i].y-miny+1;
}
sort(a+1,a+n+1,cmp);
memset(ans,0x7f,sizeof ans);
solve(1,n);
for(int i=1;i<=n;i++)
final[a[i].id]=a[ans[i]].id;
for(int i=1;i<=n;i++)
printf("%d ",final[i]);
printf("\n");
return 0;
}
【LOJ2586】【APIO2018】选圆圈 CDQ分治 扫描线 平衡树的更多相关文章
- LOJ2586 APIO2018 选圆圈
考前挣扎 KD树好题! 暴力模拟 通过kd树的结构把子树内的圈圈框起来 然后排个序根据圆心距 <= R1+R2来判断是否有交点 然后随便转个角度就可以保持优越的nlgn啦 卡精度差评 必须写ep ...
- 「APIO2018选圆圈」
「APIO2018选圆圈」 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2, \ldots, c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径 ...
- BZOJ 1492 货币兑换 cdq分治或平衡树维护凸包
题意:链接 方法:cdq分治或平衡树维护凸包 解析: 这道题我拒绝写平衡树的题解,我仅仅想说splay不要写挂,insert边界条件不要忘.del点的时候不要脑抽d错.有想写平衡树的去看140142或 ...
- 【BZOJ4285】使者 cdq分治+扫描线+树状数组
[BZOJ4285]使者 Description 公元 8192 年,人类进入星际大航海时代.在不懈的努力之下,人类占领了宇宙中的 n 个行星,并在这些行星之间修建了 n - 1 条星际航道,使得任意 ...
- 【BZOJ1492】【Luogu P4027】 [NOI2007]货币兑换 CDQ分治,平衡树,动态凸包
斜率在转移顺序下不满足单调性的斜率优化\(DP\),用动态凸包来维护.送命题. 简化版题意:每次在凸包上插入一个点,以及求一条斜率为\(K\)的直线与当前凸包的交点.思路简单实现困难. \(P.s\) ...
- BZOJ5465 APIO2018选圆圈(KD-Tree+堆)
考虑乱搞,用矩形框圆放KD-Tree上,如果当前删除的圆和矩形有交就递归下去删.为防止被卡,将坐标系旋转一定角度即可.注意eps稍微设大一点,最好开上long double. #include< ...
- [BZOJ5465][APIO2018]选圆圈(KD-Tree)
题意:给你n个圆,每次选择半径最大的,将它和与它相交的圆全部删去,输出每个圆是在哪次被删的. KD树模板题.用一个矩形框住这个圆,就可以直接剪枝了.为了防止被卡可以将点旋转一个角度,为了保险还可以多转 ...
- [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 5838 Solved: 2345[Submit][Sta ...
- 【APIO2018】选圆圈(平面分块 | CDQ分治 | KDT)
Description 给定平面上的 \(n\) 个圆,用三个参数 \((x, y, R)\) 表示圆心坐标和半径. 每次选取最大的一个尚未被删除的圆删除,并同时删除所有与其相切或相交的圆. 最后输出 ...
随机推荐
- 2019-02-20 在PyPI测试平台发布Python包
参考Packaging Python Projects, 源码在nobodxbodon/test-package-for-pypi 包名/__init__.py: 测试变量 = "值&quo ...
- Dynamics 365新引入了多选选项集类型字段
本人微信和易信公众号:微软动态CRM专家罗勇 ,回复276或者20180630可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong.me ...
- 学习Python3基础知识过程中总结
print()中end==""的用法 例子:用Python3输出九九乘法表: for i in range(1,10): for j in range(1,i+1): s=i*j ...
- (简单)华为荣耀9i LLD-AL20的Usb调试模式在哪里开启的方法
每当我们使用pc通过数据线连接上安卓手机的时候,如果手机没有开启Usb开发者调试模式,pc则没法成功检测到我们的手机,有时,我们使用的一些功能较好的应用如以前我们使用的一个应用引号精灵,老版本就需要开 ...
- Thinkphp5整合微信扫码支付开发实例
ThinkPHP框架是比较多人用的,曾经做过的一个Thinkphp5整合微信扫码支付开发实例,分享出来大家一起学习 打开首页生成订单,并显示支付二维码 public function index() ...
- docker-compose编排项目redis容器实现主从复制
一.pip管理工具安装 docker-compose是python项目,所以安装需要通过python下的包管理工具pip安装.一般linux服务器都会预安装有python环境,所以优先检查python ...
- HBase Client JAVA API
旧 的 HBase 接口逻辑与传统 JDBC 方式很不相同,新的接口与传统 JDBC 的逻辑更加相像,具有更加清晰的 Connection 管理方式. 同时,在旧的接口中,客户端何时将 Put 写到服 ...
- React Router路由传参方式总结
首先我们要知道一个前提,路由传递的参数我们可以通过props里面的属性来获取.只要组件是被<Router>组件的<component>定义和指派的,这个组件自然就有了props ...
- .NET IL实现对象深拷贝
对于深拷贝,通常的方法是将对象进行序列化,然后再反序化成为另一个对象.例如在stackoverflow上有这样的解决办法:https://stackoverflow.com/questions/785 ...
- tcping ,一个好用的TCP端口检测工具
1.常用的用法(windows) tcp -w 10 -t -d -i 5 -j --color 81.156.165.66 443 2. http模式 -u,与-h命令连用,每一行输出目标的url ...