原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html


题目传送门 - BZOJ1951


题意概括

  求 GM mod 999911659

  M=∑i|nC(n,i)

  N,G<=109


题解

  我们发现999911659是一个素数,设为p。

  费马小定理:对于任意正整数a,和素数p,有

                     ap-1 Ξ 1 (mod p)

  由此可得,              GM Ξ GM mod (p-1) (mod p)

  这个可以用快速幂搞定,现在的问题就是如何计算M

  我们研究p-1这个数。

  我们把他分解质因数:

  p-1 = 999911658 = 2 × 3 × 4679 × 35617

  我们发现他们都很小。而且没有质数的多次方之类的(不然貌似要用到ex_lucas)

  我们于是分组解决这个问题。

  对于模数为2、3、4679、35617我们分别求解。

  设当前的模数为p,那么,我们只需要枚举i(i|n),可以在的复杂度里面得到所有的i,那么现在我们考虑计算C(n,i)。

  显然,这个可以套Lucas定理:(设p为当前的素模数)

             C(n,m) Ξ C(n mod p,m mod p) × C(n div p,m div p)   (mod p)

  于是我们可以将n和m的规模在log的复杂度内搞到p以下。然后直接套C函数的公式就可以了(提前预处理出阶乘)。

  那么,我们得到了4个答案。

  然后我们考虑结合4个答案。

  记我们的答案分别为a[0]、a[1]、a[2]、a[3];而之前的四个数为p[0]~p[4]。

  我们发现,我们得到的4个答案可以写出等式:

                  a[i] Ξ M (mod p[i])   (0<=i<4)

   这个很明显就是中国剩余定理(CRT)可以搞定的。

  而且p[i]都是质数,两两互质,那么就更好办了。

  注意,开始的时候要把G=999911659的情况判掉,不然会出错。


代码

  1. #include <cstring>
  2. #include <cstdio>
  3. #include <algorithm>
  4. #include <cstdlib>
  5. #include <cmath>
  6. using namespace std;
  7. typedef long long LL;
  8. LL mod=999911659;
  9. LL num[4]={2,3,4679,35617};
  10. LL N,G,M,a[4];
  11. LL Pow(LL x,LL y,LL mod){
  12. if (!y)
  13. return 1LL;
  14. LL xx=Pow(x,y/2,mod);
  15. xx=xx*xx%mod;
  16. if (y&1LL)
  17. xx=xx*x%mod;
  18. return xx;
  19. }
  20. LL Inv(LL x,LL mod){
  21. return Pow(x,mod-2,mod);
  22. }
  23. LL fac[4][36000],inv[4][36000];
  24. void Get_fac(){
  25. for (LL x=0;x<4;x++){
  26. fac[x][0]=1;
  27. for (LL i=1;i<num[x];i++)
  28. fac[x][i]=fac[x][i-1]*i%num[x];
  29. }
  30. for (LL x=0;x<4;x++)
  31. for (LL i=0;i<num[x];i++)
  32. inv[x][i]=Inv(fac[x][i],num[x]);
  33. }
  34. LL _C(int i,LL N,LL M){
  35. if (N<M)
  36. return 0;
  37. return fac[i][N]*inv[i][M]%num[i]*inv[i][N-M]%num[i];
  38. }
  39. LL C(int i,LL N,LL M){
  40. if (M==0)
  41. return 1LL;
  42. return _C(i,N%num[i],M%num[i])*C(i,N/num[i],M/num[i])%num[i];
  43. }
  44. void ex_gcd(LL a,LL b,LL &x,LL &y){
  45. if (b==0){
  46. x=1,y=0;
  47. return;
  48. }
  49. ex_gcd(b,a%b,y,x);
  50. y-=(a/b)*x;
  51. }
  52. LL CRT(){
  53. LL x,y,A=num[0],B=a[0];
  54. for (int i=1;i<4;i++){
  55. LL A1=num[i],B1=a[i];
  56. ex_gcd(A,A1,x,y);
  57. x=((B1-B)*x%A1+A1)%A1;
  58. B+=A*x;
  59. A*=A1;
  60. }
  61. return B;
  62. }
  63. int main(){
  64. scanf("%lld%lld",&N,&G);
  65. if (G==mod){
  66. puts("0");
  67. return 0;
  68. }
  69. Get_fac();
  70. for (LL x=0;x<4;x++)
  71. for (LL i=1;i<=(LL)sqrt(N);i++)
  72. if (N%i==0){
  73. int A=i,B=N/i;
  74. if (A!=B)
  75. a[x]=(a[x]+C(x,N,A)+C(x,N,B))%num[x];
  76. else
  77. a[x]=(a[x]+C(x,N,i))%num[x];
  78. }
  79. LL res=CRT();
  80. printf("%lld",Pow(G,res,mod));
  81. return 0;
  82. }

  

BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论的更多相关文章

  1. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  2. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  3. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  4. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  5. bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)

    https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...

  6. bzoj1951 [Sdoi2010]古代猪文 ——数论综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...

  7. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

  8. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  9. 【BZOJ1951】[SDOI2010]古代猪文

    [BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...

随机推荐

  1. [Linux]关于字节序的解析

    剥鸡蛋的故事 <格列佛游记>中记载了两个征战的强国,你不会想到的是,他们打仗竟然和剥鸡蛋的姿势有关. 很多人认为,剥鸡蛋时应该打破鸡蛋较大的一端,这群人被称作“大端(Big endian) ...

  2. winform生成条形码和二维码(ZXing.Net)

    首先在项目添加ZXing.Net. 工具-->Nuget包管理器-->Nuget程序包  在所搜栏输入 ZXing.Net 如下图: 添加完成后会看见: 效果图: 所有代码: /// &l ...

  3. PHP中$_POST和$_GET的用法

    post和get是指:页面提交的两种方式get:参数都体现在url上,可以用于翻页,简单查询,get只能接收2M以下的内容,所以有局限性,另外由于内容是可见的,安全性就下降了,post:用于页面表单 ...

  4. Affiliate实战记录之一:CPI、CPA、CPM...名词解释

    1.CPM (Cost Per Mille,或者Cost Per Thousand;Cost Per Impressions) 每千人成本,按展示次数收费 网上广告收费最科学的办法是按照有多少人看到你 ...

  5. Confluence 6 为登录失败编辑,禁用和配置验证码

    在默认的情况下,验证码将会在失败登录次数达到的时候显示. 如果为登录失败编辑,禁用和配置验证码: 在屏幕的右上角单击 控制台按钮 ,然后选择 General Configuration 链接. 在左侧 ...

  6. PhpStorm 2018 安装及破解方法

    参考教程: https://blog.csdn.net/u012278016/article/details/81772566

  7. 对Swoole、Workerman和php自带的socket的理解

    为什么php自带的socket不怎么听说,基本都是用swoole,workerman去实现? 1.PHP的socket扩展是一套socket api,仅此而已. swoole,用C实现,它的socke ...

  8. 【python】json中字典key不可为数值型

    遇到了一个很诡异的错误.写一个字典,存入json文件.之后读出判断是否存在key.结果惊奇的发现,同一个key居然存在两次. 原因:json会将数值key转换为unicode 结论:使用json时字典 ...

  9. C#概念总结(一)

    1.C#程序的框架问题 首先是命名的空间申明   (NameSpace delclaration) 一个 ClASS class 方法 class属性 一个main 的方法 语句(Statement) ...

  10. 3月9日(用 DBHelper 工具连接 mysql 数据库 实现登录验证)

    一. 用DBHelper 与mysql 连接 实现最简单的登录验证. (1)新建 web project ----->选择src导入 DBHelper 工具包-------->选择web  ...