原文链接https://www.cnblogs.com/zhouzhendong/p/CF830D.html

题解

考虑用 $dp[i][j]$ 表示深度为 $i$ 的树里,有 $j$ 条路径的方案数。分四种情况转移即可:

枚举 $j,k$ ,我们来算一下 $dp[i-1][j]$ 和 $dp[i-1][k]$ 对 $dp[i]$ 的贡献。
设 $tmp = dp[i-1][j] \times dp[i-1][k]$ ,

1. 不合并任何路径。$dp[i][j+k] += tmp$
2. 不合并,并加入当前根节点单独组成路径。$dp[i][j+k+1] += tmp$
3. 合并根和任意一条路径。$dp[i][j+k] += tmp \times 2(j+k)$
4. 合并根和任意两条路径。$dp[i][j+k-1]+= tmp \times 2\binom{j+k}{2}$

由于当 $j>n$ 的时候,$dp[i][j]$ 对于最终答案一定没有贡献(这么多路径不可能合并成一条),所以 dp 状态第二维的上界是 $n$ 。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=1;
char ch=getchar();
while (!isdigit(ch)&&ch!='-')
ch=getchar();
if (ch=='-')
f=0,ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?x:-x;
}
const int N=405,mod=1e9+7;
int n;
int Inv[N],Fac[N];
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
int C(int x,int y){
if (y<0||y>x)
return 0;
return 1LL*Fac[x]*Inv[y]%mod*Inv[x-y]%mod;
}
int dp[N][N];
int main(){
n=read();
for (int i=Fac[0]=1;i<=n;i++)
Fac[i]=1LL*Fac[i-1]*i%mod;
Inv[n]=Pow(Fac[n],mod-2);
for (int i=n;i>=1;i--)
Inv[i-1]=1LL*Inv[i]*i%mod;
memset(dp,0,sizeof dp);
dp[1][1]=dp[1][0]=1;
for (int i=2;i<=n;i++)
for (int j=0;j<=n;j++)
for (int k=0;j+k<=n;k++){
int tmp=1LL*dp[i-1][j]*dp[i-1][k]%mod;
dp[i][j+k]=(tmp+dp[i][j+k])%mod;
dp[i][j+k]=(2LL*tmp*(j+k)+dp[i][j+k])%mod;
dp[i][j+k+1]=(tmp+dp[i][j+k+1])%mod;
dp[i][j+k-1]=(2LL*tmp*C(j+k,2)+dp[i][j+k-1])%mod;
}
cout << dp[n][1];
return 0;
}

  

Codeforces 830D Singer House 动态规划的更多相关文章

  1. Singer House CodeForces - 830D (组合计数,dp)

    大意: 一个$k$层完全二叉树, 每个节点向它祖先连边, 就得到一个$k$房子, 求$k$房子的所有简单路径数. $DP$好题. 首先设$dp_{i,j}$表示$i$房子, 分出$j$条简单路径的方案 ...

  2. Codeforces 839C Journey - 树形动态规划 - 数学期望

    There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can r ...

  3. Codeforces 834D The Bakery - 动态规划 - 线段树

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  4. Codeforces 837D Round Subset - 动态规划 - 数论

    Let's call the roundness of the number the number of zeros to which it ends. You have an array of n ...

  5. CodeForces 623E Transforming Sequence 动态规划 倍增 多项式 FFT 组合数学

    原文链接http://www.cnblogs.com/zhouzhendong/p/8848990.html 题目传送门 - CodeForces 623E 题意 给定$n,k$. 让你构造序列$a( ...

  6. Codeforces 101623E English Restaurant - 动态规划

    题目传送门 传送门 题目大意 餐厅有$n$张桌子,第$i$张桌子可以容纳$c_i$个人,有$t$组客人,每组客人的人数等概率是$[1, g]$中的整数. 每来一组人数为$x$客人,餐厅如果能找到最小的 ...

  7. Codeforces 264C Choosing Balls 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF264C.html 题目传送门 - CF264C 题意 给定一个有 $n$ 个元素的序列,序列的每一个元素是个 ...

  8. Codeforces 1000G Two-Paths 树形动态规划 LCA

    原文链接https://www.cnblogs.com/zhouzhendong/p/9246484.html 题目传送门 - Codeforces 1000G Two-Paths 题意 给定一棵有 ...

  9. codeforces 17C Balance(动态规划)

    codeforces 17C Balance 题意 给定一个串,字符集{'a', 'b', 'c'},操作是:选定相邻的两个字符,把其中一个变成另一个.可以做0次或者多次,问最后可以生成多少种,使得任 ...

随机推荐

  1. 修改更新源sources.list,提高软件下载安装速度(2017.04.05)

    1.切换到root用户(如果已经是root用户就直接看第二步) dnt@HackerKali:~$ su 密码: 2.用文本编辑器打开sources.list,手动添加下面的更新源 root@Hack ...

  2. NodeJS+Express+MySQL开发小记(2):服务器部署

    http://borninsummer.com/2015/06/17/notes-on-developing-nodejs-webapp/ NodeJS+Express+MySQL开发小记(1)里讲过 ...

  3. python 前面几个单词含义

    切片 str[start:end:step] start:从xxx开始    (startswith) end:切到xxx为止  (endswith) 不包括 字符串操作 .capitalize()# ...

  4. Oracle12c Release1 安装图解(详解)

    Oracle12c Release1 安装图解(详解) Oracle12c 终于发布了,代号为 c,即为 Cloud(云),替代了网格 (Grid)运算. 我的机器基础环境:Windows8(x64) ...

  5. Confluence 6 包括从其他 Confluence 服务器上来的通知

    Confluence workbox 可以显示从 Confluence 服务器上发送过来的消息. 让我们假设你有 2 个 Confluence 服务器, ConfluenceChatty 和 Conf ...

  6. iOS项目国际化详解

    现在的开发中难免会遇到项目国际化处理,下面把我理解到的国际化相关的知识点进行总结归纳 1 首先是对项目名称,系统性的文字进行名字化,比如程序名字 1,先给项目添加语言 2 添加InfoPlist.st ...

  7. Android CTS Test

    什么是CTS测试?了解这个问题前,我们先来搜索了解一遍“Google GMS 认证”.GMS全称为GoogleMobile Service,即谷歌移动服务.说白了GMS其实就是一系列谷歌的应用集合.谷 ...

  8. 放一点百度来的,常见的windowserror

    0操作成功完成.1功能错误.2系统找不到指定的文件.3系统找不到指定的路径.4系统无法打开文件.5拒绝访问.6句柄无效.7存储控制块被损坏.8存储空间不足,无法处理此命令.9存储控制块地址无效.10环 ...

  9. CentOS 7 安装JDK环境

    1.JDK下载地址:https://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html ...

  10. GoogLeNet 之 Inception v1 v2 v3 v4

    论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating De ...