net平台下c#操作ElasticSearch详解
net平台下c#操作ElasticSearch详解
ElasticSearch系列学习
ElasticSearch第五步-.net平台下c#操作ElasticSearch详解
前面我们讲解了关于ElasticSearch的安装配置,以及CRUD
本章我将讲解怎么使用c#操作ElasticSearch。
首先你需要一定的技术储备,比如:asp.net webapi,mvc,jsonp,knockout。这些知识在这里不再讲解,请自行Google。
项目DEMO介绍
搜索和索引功能我是以服务(webapi项目)方式提供的,在客户端(mvc项目)中的view视图中,直接使用ajax(jsonp格式)方式调用webapi,然后使用knockout绑定到table上的。
项目结构如图:
引入驱动
工欲善其事必先利其器,首先我们需要在Supernova.Webapi层中引入操作ElasticSearch的驱动dll PlainElastic.Net。
如图:
封装操作ElasticSearch的ElasticSearchHelper
demo中涉及的实体对象模型
详细介绍ElasticSearchHelper里面的方法
1.索引文档(注意:索引文档之前先用配置filed对应的ik分词):

public IndexResult Index(string indexName, string indexType, string id, string jsonDocument)
{ var serializer = new JsonNetSerializer();
string cmd = new IndexCommand(indexName, indexType, id);
OperationResult result = Client.Put(cmd, jsonDocument); var indexResult = serializer.ToIndexResult(result.Result);
return indexResult;
}
public IndexResult Index(string indexName, string indexType, string id, object document)
{
var serializer = new JsonNetSerializer();
var jsonDocument = serializer.Serialize(document);
return Index(indexName, indexType, id, jsonDocument);
}

2.对单个字段的全文检索,字段intro 包含词组key中的任意一个单词。例如:词组(中国美好),只要每条数据的intro字段包含"中国"或者"美好"就返回。

public personList Search<person>(string indexName, string indexType, string key,int from ,int size)
{
string cmd = new SearchCommand(indexName, indexType);
string query = new QueryBuilder<person>()
//1 查询
.Query(b =>
b.Bool(m =>
//并且关系
m.Must(t => //分词的最小单位或关系查询
t.QueryString(t1=>t1.DefaultField("intro").Query(key))
//.QueryString(t1 => t1.DefaultField("name").Query(key))
// t .Terms(t2=>t2.Field("intro").Values("研究","方鸿渐"))
//范围查询
// .Range(r => r.Field("age").From("100").To("200") )
)
)
)
//分页
.From(from)
.Size(size)
//排序
// .Sort(c => c.Field("age", SortDirection.desc))
//添加高亮
.Highlight(h => h
.PreTags("<b>")
.PostTags("</b>")
.Fields(
f => f.FieldName("intro").Order(HighlightOrder.score),
f => f.FieldName("_all")
)
)
.Build(); string result = Client.Post(cmd, query);
var serializer = new JsonNetSerializer();
var list = serializer.ToSearchResult<Supernova.Webapi.DbHelper.person>(result);
personList datalist = new personList();
datalist.hits = list.hits.total;
datalist.took = list.took;
var personList= list.hits.hits.Select(c => new Supernova.Webapi.DbHelper.person() {
id=c._source.id,
age=c._source.age,
birthday =c._source.birthday,
intro=string.Join("",c.highlight["intro"]), //高亮显示的内容,一条记录中出现了几次
name=c._source.name,
sex=c._source.sex, });
datalist.list.AddRange(personList);
return datalist; }

3.字段intro 或者name 包含词组key中的所有单词。例如:词组(中国美好),只要每条数据的intro或者name字段包含"中国"并且包含"美好"就返回。

public personList SearchFullFileds<person>(string indexName, string indexType, string key, int from, int size)
{
MustQuery<person> mustNameQueryKeys = new MustQuery<person>();
MustQuery<person> mustIntroQueryKeys = new MustQuery<person>();
var arrKeys = GetIKTokenFromStr(key);
foreach (var item in arrKeys)
{
mustNameQueryKeys = mustNameQueryKeys.Term(t3 => t3.Field("name").Value(item)) as MustQuery<person>;
mustIntroQueryKeys = mustIntroQueryKeys.Term(t3 => t3.Field("intro").Value(item)) as MustQuery<person>;
} string cmd = new SearchCommand(indexName, indexType);
string query = new QueryBuilder<person>()
//1 查询
.Query(b =>
b.Bool(m =>
m.Should(t =>
t.Bool(m1 =>
m1.Must(
t2 =>
//t2.Term(t3=>t3.Field("name").Value("研究"))
// .Term(t3=>t3.Field("name").Value("方鸿渐"))
mustNameQueryKeys
)
)
)
.Should(t =>
t.Bool(m1 =>
m1.Must(t2 =>
//t2.Term(t3 => t3.Field("intro").Value("研究"))
//.Term(t3 => t3.Field("intro").Value("方鸿渐"))
mustIntroQueryKeys
)
)
)
)
)
//分页
.From(from)
.Size(size)
//排序
// .Sort(c => c.Field("age", SortDirection.desc))
//添加高亮
.Highlight(h => h
.PreTags("<b>")
.PostTags("</b>")
.Fields(
f => f.FieldName("intro").Order(HighlightOrder.score),
f => f.FieldName("name").Order(HighlightOrder.score)
)
)
.Build(); string result = Client.Post(cmd, query);
var serializer = new JsonNetSerializer();
var list = serializer.ToSearchResult<Supernova.Webapi.DbHelper.person>(result);
personList datalist = new personList();
datalist.hits = list.hits.total;
datalist.took = list.took;
var personList = list.hits.hits.Select(c => new Supernova.Webapi.DbHelper.person()
{
id = c._source.id,
age = c._source.age,
birthday = c._source.birthday,
intro = c.highlight==null||!c.highlight.Keys.Contains("intro") ? c._source.intro : string.Join("", c.highlight["intro"]), //高亮显示的内容,一条记录中出现了几次
name = c.highlight==null||!c.highlight.Keys.Contains("name") ? c._source.name : string.Join("", c.highlight["name"]),
sex = c._source.sex });
datalist.list.AddRange(personList);
return datalist; }

3.搜索age在1到500之间,并且字段intro 或者name 包含词组key中的所有单词。

public personList SearchFullFiledss<person>(string indexName, string indexType, string key, int from, int size)
{
MustQuery<person> mustNameQueryKeys = new MustQuery<person>();
MustQuery<person> mustIntroQueryKeys = new MustQuery<person>();
var arrKeys = GetIKTokenFromStr(key);
foreach (var item in arrKeys)
{
mustNameQueryKeys = mustNameQueryKeys.Term(t3 => t3.Field("name").Value(item)) as MustQuery<person>;
mustIntroQueryKeys = mustIntroQueryKeys.Term(t3 => t3.Field("intro").Value(item)) as MustQuery<person>;
} string cmd = new SearchCommand(indexName, indexType);
string query = new QueryBuilder<person>()
//1 查询
.Query(b =>
b.Bool(m =>
m.Must(t =>
t.Range(r => r.Field("age").From("1").To("500"))
.Bool(ms =>
ms.Should(ts =>
ts.Bool(m1 =>
m1.Must(
t2 =>
//t2.Term(t3=>t3.Field("name").Value("研究"))
// .Term(t3=>t3.Field("name").Value("方鸿渐"))
//
mustNameQueryKeys
)
)
)
.Should(ts =>
ts.Bool(m1 =>
m1.Must(t2 =>
//t2.Term(t3 => t3.Field("intro").Value("研究"))
//.Term(t3 => t3.Field("intro").Value("方鸿渐")) //
mustIntroQueryKeys
)
)
)
)
)
)
)
//分页
.From(from)
.Size(size)
//排序
// .Sort(c => c.Field("age", SortDirection.desc))
//添加高亮
.Highlight(h => h
.PreTags("<b>")
.PostTags("</b>")
.Fields(
f => f.FieldName("intro").Order(HighlightOrder.score),
f => f.FieldName("name").Order(HighlightOrder.score)
)
)
.Build(); string result = Client.Post(cmd, query);
var serializer = new JsonNetSerializer();
var list = serializer.ToSearchResult<Supernova.Webapi.DbHelper.person>(result);
personList datalist = new personList();
datalist.hits = list.hits.total;
datalist.took = list.took;
var personList = list.hits.hits.Select(c => new Supernova.Webapi.DbHelper.person()
{
id = c._source.id,
age = c._source.age,
birthday = c._source.birthday,
intro = c.highlight==null||!c.highlight.Keys.Contains("intro") ? c._source.intro : string.Join("", c.highlight["intro"]), //高亮显示的内容,一条记录中出现了几次
name = c.highlight==null||!c.highlight.Keys.Contains("name") ? c._source.name : string.Join("", c.highlight["name"]),
sex = c._source.sex });
datalist.list.AddRange(personList);
return datalist; }

需要用到的方法:将语句用ik分词,返回分词结果的集合

private List<string> GetIKTokenFromStr(string key)
{
string s = "/db_test/_analyze?analyzer=ik";
var result = Client.Post(s, "{"+key+"}");
var serializer = new JsonNetSerializer();
var list = serializer.Deserialize(result, typeof(ik)) as ik;
return list.tokens.Select(c=>c.token).ToList();
}

ASP.NET WebApi 调用ElasticSearchHelper
1.首先我们添加一个基类ApiController

public class BaseApiController : ApiController
{ public MongoDatabase db;
public MongoCollection col = null;//用于直接返回查询的json
public BaseApiController() { }
public BaseApiController(string collectionName)
{
db = DbHelper.MongodbHelper.Instance.DB;
col = db.GetCollection(collectionName);
}
public string GetStringRequest(string paramter)
{
return HttpContext.Current.Request.QueryString[paramter] ?? "";
}
public int? GetIntRequest(string paramter)
{
string tmp = HttpContext.Current.Request.QueryString[paramter] ?? "";
int tag = 0;
if (!int.TryParse(tmp, out tag))
{
return null;
}
return tag;
}
}

2.操作ElasticSearch的apicontroller如下:
3.索引数据的api如下:

/// <summary>
/// 索引数据
/// </summary>
/// <returns></returns>
[Route("estest/index")]
[HttpGet]
public object index()
{
int length = S.test.Length;
Random rd = new Random();
Random rdName = new Random();
ParallelOptions _po = new ParallelOptions();
_po.MaxDegreeOfParallelism = 4;
Parallel.For(0, 10000000, _po, c =>
{ var start = rd.Next(0, S.test.Length - 700);
var startName = rd.Next(0, S.test.Length - 30);
person p = new person() { age = DateTime.Now.Millisecond, birthday = DateTime.Now, id = Guid.NewGuid().ToString(), intro = S.test.Substring(start, 629) + c, name = S.test.Substring(startName, 29) + c, sex = true };
ElasticSearchHelper.Intance.Index("db_test", "person", Guid.NewGuid().ToString(), p);
});
return 1;
}

索引使用的测试数据如下:
4.搜索api如下:

[Route("estest")]
[HttpGet]
public object Search()
{
//1 搜索数据
string key = GetStringRequest("Key");
int? from = GetIntRequest("from");
int? size = GetIntRequest("size"); return ElasticSearchHelper.Intance.Search<person>("db_test", "person", key ?? "方鸿渐", from == null ? 0 : from.Value, size == null ? 20 : size.Value); }
[Route("estest/SearchFullFileds")]
[HttpGet]
public object SearchFullFileds()
{
//1 搜索数据
string key = GetStringRequest("Key");
int? from = GetIntRequest("from");
int? size = GetIntRequest("size");
return ElasticSearchHelper.Intance.SearchFullFileds<person>("db_test", "person", key ?? "方鸿渐", from == null ? 0 : from.Value, size == null ? 20 : size.Value); }
[Route("estest/SearchFullFiledss")]
[HttpGet]
public object SearchFullFiledss()
{
//1 搜索数据
string key = GetStringRequest("Key");
int? from = GetIntRequest("from");
int? size = GetIntRequest("size");
return ElasticSearchHelper.Intance.SearchFullFiledss<person>("db_test", "person", key ?? "方鸿渐", from == null ? 0 : from.Value, size == null ? 20 : size.Value); }

WebSite中的view视图调用webapi
说明:我是直接使用ajax(jsop格式)调用webapi,返回的数据直接用knockout绑定到table中的。
视图代码如下:

@{
ViewBag.Title = "ElasticSearch测试";
Layout = null;
}
<link href="~/Content/bootstrap.css" rel="stylesheet" />
<script src="~/Scripts/jquery-2.1.3.min.js"></script>
<script src="~/Scripts/knockout-3.3.0.js"></script>
<style>
b{
color:red;
}
</style>
<script>
$(function () {
function ViewModel() {
self = this;
self.getData = ko.observableArray();
//定义加载数据方法
self.loadData = function () {
$.get("http://192.168.0.230/api/estest//SearchFullFiledss", { key: "@Request.QueryString["key"]", from: "@Request.QueryString["from"]", size: "@Request.QueryString["size"]" }, function (data) {
// alert(data.hits);
// alert(data.list.length);
$("#count").text("符合条件的数据供:" + data.hits + " 共花费了:" + data.took + "毫秒"); $.each(data.list, function (i) {
var date=data.list[i].birthday; });
self.getData(data.list);
}, "jsonp");
};
//调用定义方法
self.loadData();
}
ko.applyBindings(new ViewModel()); }); </script>
<div id="count"></div> <div class="row">
<table class="table-bordered table-condensed table-hover table-striped">
<tbody data-bind="foreach: getData">
<tr>
<td data-bind="text: id" />
<td data-bind="html: name" />
<td data-bind="text: sex" />
<td data-bind="text: age" />
<td data-bind="text: birthday" />
<td data-bind="html: intro" />
</tr>
</tbody>
</table>
</div>
<script> </script>

搜索结果测试如下(我是用"api/estest//SearchFullFiledss"这个api测试的,搜索age在1到500之间,并且字段intro 或者name 包含词组key中的所有单词。):
1.首先我们看一看测试数据总共有多少:
我们可以看到总共db_test中总共有两千多万条数据。
搜索测试1
测试条件:key=上海方鸿渐&from=0&size=100,key指搜索关键短语,0是从第0条开始区数据,100是指取一百条数据,隐藏条件是age大于1小于500
我们可以看到,首次搜索时,两千多万条数据大约耗时3.5秒,这里还包括取100条数据的时间,如果把数据改为20条则会更快。这里的硬件配置还只限于我的本机测试(内存8G,处理器Intel i5-4590 3.3GHZ)。
搜索测试2
测试条件同测试1:key=上海方鸿渐&from=0&size=100,key指搜索关键短语,0是从第0条开始区数据,100是指取一百条数据,隐藏条件是age大于1小于500
我们可以看到,搜索耗时降到了大约1.5秒。这说明同一个关键词搜索越频繁,搜索速度越快,这是因为ElasticSearch会自动将搜索的内容缓存到内存中。
搜索测试3
测试条件:key=香烟德国&from=0&size=20,key指搜索关键短语,0是从第0条开始区数据,20是指取一百条数据,隐藏条件是age大于1小于500
搜索测试4
测试条件同测试3,二次相同条件搜索:key=香烟德国&from=0&size=20,key指搜索关键短语,0是从第0条开始区数据,20是指取一百条数据,隐藏条件是age大于1小于500
我们可以看到,在二次搜索条件相同,搜索数据降低到20条的时候,只耗时不到0.5秒。
本章完……
ElasticSearch系列学习
ElasticSearch第五步-.net平台下c#操作ElasticSearch详解
net平台下c#操作ElasticSearch详解的更多相关文章
- ElasticSearch-.net平台下c#操作ElasticSearch详解
ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense ElasticSearch第三步-中文分词 ElasticSea ...
- ElasticSearch第五步-.net平台下c#操作ElasticSearch详解
前面我们讲解了关于ElasticSearch的安装配置,以及CRUD 本章我将讲解怎么使用c#操作ElasticSearch. 首先你需要一定的技术储备,比如:asp.net webapi,mvc,j ...
- (转) unity 在移动平台中,文件操作路径详解
http://www.unitymanual.com/thread-23491-1-1.html 今天,这篇文章其实是个老生常谈的问题咯,在网上类似的文章也比比皆是,在此我只是做个详细总结方便大家能够 ...
- unity 在移动平台中,文件操作路径详解
今天,这篇文章其实是个老生常谈的问题咯,在网上类似的文章也比比皆是,在此我只是做个详细总结方便大家能够更好.更快的掌握,当然,如有不足的地方 欢迎指正!!! 相信大家在开发过程中,难免会保存一些文件在 ...
- c#操作ElasticSearch5详解
c#操作ElasticSearch详解 ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense ElasticSearc ...
- Elasticsearch详解
Elasticsearch详解 Chandler_珏瑜 关注 5.8 2019.05.05 17:19* 字数 10971 阅读 1147评论 5喜欢 36 5.1 Lucene简介 Lucene ...
- Elasticsearch详解-续
Elasticsearch详解-续 Chandler_珏瑜 关注 7.6 2019.05.22 10:46* 字数 8366 阅读 675评论 4喜欢 25 5.3 性能调优 Elasticse ...
- 从原理到应用,Elasticsearch详解
简介 Elasticsearch(简称ES)是一个分布式.可扩展.实时的搜索与数据分析引擎.ES不仅仅只是全文搜索,还支持结构化搜索.数据分析.复杂的语言处理.地理位置和对象间关联关系等. ES的底层 ...
- 【转帖】从原理到应用,Elasticsearch详解
从原理到应用,Elasticsearch详解 https://segmentfault.com/a/1190000020022504 elasticsearch 2.1k 次阅读 · 读完需要 4 ...
随机推荐
- IPerf——网络测试工具介绍与源码解析(1)
IPerf是一个开源的测试网络宽带并能统计并报告延迟抖动.数据包丢失率信息的控制台命令程序,通过参数选项可以方便地看出,通过设置不同的选项值对网络带宽的影响,对于学习网络编程还是有一定的借鉴意义,至少 ...
- maven与jdk版本对应关系
Maven发布历史 发布日期 版 必需的Java版本 链接 2018年6月21日 3.5.4 Java 7 宣布,发布说明,参考文档 2018年3月8日 3.5.3 宣布,发布说明,参考文档 2017 ...
- Ubuntu下启动 Redis时, 提示 "Can't open the log file: Permission denied failed"
问题来源:在删除var目录下的log文件时,将redis文件夹删除了.然后在重启时:/etc/init.d/redis-server start,提示: Starting redis-server: ...
- C# -- 随机数(Random)的使用
使用随机数产生一组大乐透号码 1. C#代码 1 Console.WriteLine("===============大乐透===红色球==============="); Lis ...
- Ecto 总结
ecto 简介 ecto 相当于 elixir 的 ORM,但是得益于 elixir 语言,和传统的 ORM 相比,更加简洁和强大. ecto 主要分为 4 部分: Repo: 这是和真正数据库交互的 ...
- Cesium实现文字、点、多段线、多边形的实时绘制
背景知识 点.线.面以及文字的实时绘制是GIS很重要的一个功能,是用户对感兴趣区域标注的业务需要.同时Cesium提供了点.线(多段线).面及文字(label)绘制的接口,绘制方式总共有两种,一种是通 ...
- linux中find命令高级用法
前言 在<Linux中的文件查找技巧>一文中,我们已经知道了文件查找的基本方法,今天我们介绍find命令的一些高级使用技巧.它能满足我们一些更加复杂的需求. 查找空文件或空目录 有时候需要 ...
- docker pull下载镜像报错Get https://registry-1.docker.io/v2/library/centos/manifests/latest:..... timeout
使用docker pull从镜像仓库拉取镜像时报错如下:[root@docker-registry ~]# docker pull centosUsing default tag: latestTry ...
- RabbitMQ的六种工作模式
一.基于erlang语言: 是一种支持高并发的语言 RabbitMQ的六种工作模式: 1.1 simple简单模式 消息产生着§将消息放入队列 消息的消费者(consumer) 监听(while) 消 ...
- Python 在 Terminal 中的自动补全
为了在 Terminal 中使用 Python 更加方便,在 home 目录下添加脚本 .pythonstartup,内容如下, 然后在 .bashrc 中添加 export PYTHONSTARTU ...