CF892/problem/C
题目传送门:
[http://codeforces.com/contest/892/problem/C]
题意:
给你一个长度为n的数组,相邻两个元素的GCD(最大公约数)可以取代二者的任意一个,问你最少需要多少个操作数使得所有元素变为1。
如果不可以全化为1,输出0。
思路:
GCD性质:gcd(gcd(a,b),gcd(b,c))=gcd(gcd(a,b),c)=gcd(a,gcd(b,c))。先特判一下初始数组有1这个元素,那么假设有sum1个,输出,n-sum1就好了,因为1可以扩展到其他位置。否则,凑出一个1。怎么凑?
首先明确找的是相邻两个数的最大公约数,若相邻两个数的最大公约数等于1了就结束了,若不等于1,替换其中一个,在和相邻数求gcd,对于一个数来说,它被替换成 和左边的数的gcd,或和右边数的gcd都一样,举个例子:2,6,9 任何相邻两个数的gcd都不为1,看6这个数的位置,它可以被替换成和2的gcd,再和9求gcd,或被替换成和9的gcd,再和2求gcd,你看看这两种情况的结果是一样吧;只需贪心地找每次更新最小即可。
尤其注意n==1,这个时候如果,该元素是1,就是特判了,否则不可能变为1,因为没有其他元素和它GCD了
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
int gcd(int x,int y){
return x ? gcd(y%x,x) : y;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n,i,j,ans,sum;
int a[2005];
while(cin>>n){
sum=0,ans=1e9;
for(i=1;i<=n;i++)
{
cin>>a[i];
if(a[i]==1) sum++;
}
if(sum>0){
cout<<n-sum<<endl;
continue;
}
for(i=1;i<=n;i++)
{
int tep=a[i];
for(j=i+1;j<=n;j++){
tep=gcd(tep,a[j]);
if(tep==1){
ans=min(ans,j-i);//记录化为1的最小步数
break;
}
}
}
if(n==1||ans==1e9) cout<<-1<<endl;
else
cout<<ans+n-1<<endl;
}
return 0;
}
CF892/problem/C的更多相关文章
- 1199 Problem B: 大小关系
求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...
- No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.
Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...
- C - NP-Hard Problem(二分图判定-染色法)
C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144 ...
- Time Consume Problem
I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- [LeetCode] Water and Jug Problem 水罐问题
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
随机推荐
- mssql sqlserver in 关键字在值为null的应用举例
转自:http://www.maomao365.com/?p=6873 摘要: 下文通过案例分析in 关键字在值为null的应用举例, 分析出not in关键字在null值产生的异常信息 如下所示: ...
- 洗礼灵魂,修炼python(65)--爬虫篇—BeautifulSoup:“忘掉正则表达式吧,我拉车养你”
前面解析了正则表达式,其实内容还挺多的对吧?确实挺适用的,不仅是python,其他语言或者web前端后端基本都要掌握正则表达式知识,但是你说,这么多,要完全的掌握,灵活运用的话,得搞多久啊?并且如果一 ...
- ugui中toggle.isOn的属性笔记
准备知识 toggle:指unity3d引擎中UGUI的 toggle组件 (单选框) 本文使用lua语言描述 事件触发 使用unity的ugui,你如果细心观察会发现toggle在界面被关闭/隐藏( ...
- C++多线程同步技巧(四)--- 信号量
简介 信号量是维护0到指定最大值之间的同步对象.信号量状态在其计数大于0时是有信号的,而其计数是0时是无信号的.信号量对象在控制上可以支持有限数量共享资源的访问,可以用于线程同步,预防死锁等领域. 信 ...
- Linux:固定 ip
默认情况下,安装完操作系统时,ip是采用dhcp来动态分配的.通常我们需要将其固定下来. 不然 每次系统重启后,ip都会变动,这样会给日常工作带来不必要的麻烦的. 下面就是在rhel .centos ...
- php 计算出一年中每周的周一日期
最近接到一个任务,归纳起来,就是:要算出每年当中,每周的周一日期.想了一会,看了下date函数,深入了解了一下date函数各个参数的含义之后,终于把这道题做出来了! 在date()函数中,有一个参数对 ...
- HDFS的dfs.replication不同验证
对于上传文件到hdfs上时,当时hadoop的副本系数是几,这个文件的块数副本数就会有几份,无论以后你怎么更改系统副本系统,这个文件的副本数都不会改变,也就说上传到分布式系统上的文件副本数由当时的系统 ...
- 制作CSS绚烂效果的三种属性
animation(动画).transition(过渡).transform(变形) https://www.cnblogs.com/shenfangfang/p/5713564.html
- Ecelipse上添加Server
第一步,打开eclipse工具,点击菜单栏中的"Help",选择"Install New Software" 第二步,点击Add按钮 第三步,Name输入:&q ...
- C#编程の模板
C#泛型编程已经深入人心了.为什么又提出C#模板编程呢?因为C#泛型存在一些局限性,突破这些局限性,需要使用C#方式的模板编程.由于C#语法.编译器.IDE限制,C#模板编程没有C++模板编程使用方便 ...