前面介绍了两个文本检测的网络,分别为RRCNN和CTPN,接下来鄙人会介绍语义分割的一些经典网络,同样也是论文+代码实现的过程,这里记录一下自己学到的东西,首先从论文下手吧。

英文论文原文地址:https://arxiv.org/abs/1505.04597

前面的论文忘记介绍大佬的名字了,在这里先抱个歉。。。那么接下来有请提出U-Net的大佬们一一列席:Olaf Ronneberger, Philipp Fischer, and Thomas Brox

这里依次是三位大佬的主页   https://lmb.informatik.uni-freiburg.de/people/ronneber/

https://lmb.informatik.uni-freiburg.de/people/fischer/          https://lmb.informatik.uni-freiburg.de/people/brox/  其中,有他们的论文及代码实现,感兴趣的可以进行学习实现一下。

下面进入正文,首先作者开头就提到了,通过使用数据增强可以更加高效的使用标记的样本。结构包括一个压缩路径 用于捕捉上下文信息,还有一个对称的展开路径 用于精确的定位。这种网络的特点就是可以对很少的几张图片进行end-to-end训练并且表现的较好。在医学图像上需要对每个像素进行分类,有位大佬提出了用滑动窗口的方法,通过一个patch(该像素周围)的类别对像素进行分类,要求是一是网络可以进行定位,二是patch的数量远大于训练的图片,结果还是喜人的。但接下来,作者就开始进行批斗了,首先作者认为这个做法很慢,网络必须经过每个patch,这就会因为很多重叠造成很多冗余。再就是,在定位的准确性和上下文的使用二者要进行权衡,更大的pathc需要更多的最大池化层来减少定位精度,而小的patch包含的上下文信息就较少。

然而作者想到了机智的方法可以解决上述问题,作者提出的 结构是建立在全卷积网络。作者对其进行修改和扩展,使其可以在很少的训练图像下 进行工作,同时产生更精确的分割。

网络结构如下:

全卷积网络的主要思路是通过连续层来补充通常 的压缩网络。这里池化操作被上采样取代。这些层增加了输出的分辨率,因此,为了定位,从压缩路径中获得的高分辨率特征与上采样的输出结合。一系列卷积层会根据这些信息组合学习到更精确的输出。

作者在结构的上采样部分进行了修改,有大量特征通道,允许网络将上下文信息传播到更高分辨率的层。结构上,压缩路径与展开路径或多或少的有些对称,形成一个U形。这个U网比较奇葩,没有全连接层,而且仅使用每个卷积层的有效部分通过重叠+平铺,可以实现任意大小图片的无缝分割。为了预测图像边界区域中的像素,可以通过输入图像的镜像操作来推断遗失的上下文。前面说的这个策略很适合于大的图片。作者将训练图片进行弹性变换(个人感觉是各种图像处理的套路)来实现数据增强。

下面大体说一说网络的结构,摆在你面前的有两条路,一条为压缩路径,另一条为扩展路径,压缩路径的结构和卷积结构相同,包括两次3*3卷积,每个卷积后接一个RELU,和一个2*2的最大池化层(stride=2)用于下采样。在每个下采样的过程中,将特征通道数加倍,扩张路径中的每一步都包括上采样,然后进行2*2的反卷积,其特征通道数减半,与来自压缩路径中相对应的裁剪feature map级联,同时进行两个3*3的卷积,并捎带个RELU。由于卷积边界上像素有丢失,因此,进行裁剪是必要的。在最后一层,用大小为1*1的卷积将64维的特征向量映射到目标的类别数目上。次网络总共有23个卷积层。

Unet网络介绍到这里,这里提一下,Unet网络十分适合于生物医学上的处理,同时由于医学影像较少,因此作者进行了数据增强,使Unet能够发挥的更加出色。

论文阅读笔记五:U-Net: Convolutional Networks for Biomedical Image Segmentation(CVPR2015)的更多相关文章

  1. 【Semantic Segmentation】U-Net: Convolutional Networks for Biomedical Image Segmentation 论文解析(转)

    目录 0. 前言 1. 第一篇 2. 第二篇 3. 第三篇keras实现 4. 一篇关于U-Net的改进 0. 前言   今天读了U-Net觉得很不错,同时网上很多很好很详细的讲解,因此就不再自己写一 ...

  2. 论文阅读笔记五十四:Gradient Harmonized Single-stage Detector(CVPR2019)

    论文原址:https://arxiv.org/pdf/1811.05181.pdf github:https://github.com/libuyu/GHM_Detection 摘要 尽管单阶段的检测 ...

  3. 论文阅读笔记六十一:Selective Kernel Networks(SKNet CVPR2019)

    论文原址:https://arxiv.org/pdf/1903.06586.pdf github: https://github.com/implus/SKNet 摘要 在标准的卷积网络中,每层网络中 ...

  4. 论文阅读笔记五十七:FCOS: Fully Convolutional One-Stage Object Detection(CVPR2019)

    论文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一个基于全卷积的单阶段检测网络,类似于语义分割,针对每 ...

  5. 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...

  6. 论文阅读笔记五十一:CenterNet: Keypoint Triplets for Object Detection(CVPR2019)

    论文链接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目标检测中,基于关键点的 ...

  7. 论文阅读笔记五十:CornerNet: Detecting Objects as Paired Keypoints(ECCV2018)

    论文原址:https://arxiv.org/pdf/1808.01244.pdf github:https://github.com/princeton-vl/CornerNet 摘要 本文提出了目 ...

  8. 论文阅读笔记五十六:(ExtremeNet)Bottom-up Object Detection by Grouping Extreme and Center Points(CVPR2019)

    论文原址:https://arxiv.org/abs/1901.08043 github: https://github.com/xingyizhou/ExtremeNet 摘要 本文利用一个关键点检 ...

  9. 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...

随机推荐

  1. 机器学习超参数优化算法-Hyperband

    参考文献:Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization I. 传统优化算法 机器学习 ...

  2. android中常用的优秀功能 (AsyncTask)

    1.用好 AsyncTask 一个优秀的android app,肯定少不了一个很好的用户体验,除了界面等外,流畅的交互,快速响应的速度都是至关重要,若 是加载一个数据,都得等上几秒钟,怕是app卸载率 ...

  3. [转] 一文弄懂神经网络中的反向传播法——BackPropagation

    在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/ ...

  4. 2017-2018-2 20165325 实验四《Android程序设计》实验报告

    一.Android程序设计-1 1.检查点要求 Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二版)(EPUBIT,Java for Android ...

  5. Templates<2>

    Part:template specialized Part1:template specialized #include <iostream> #include <stdio.h& ...

  6. 在operator =中要处理“自我赋值”

    防止自我赋值很有必要 Widget w; w = w; a[i] = a[j]; //a[i]和a[j]实际上指向同一个元素 *pi = *pj; //pi和pj实际上指向同一个元素 自我赋值的危害: ...

  7. Windows下文件夹扩展名

    回收站.{645ff040-5081-101b-9f08-00aa002f954e} 拨号网络.{992CFFA0-F557-101A-88EC-00DD010CCC48} 打印机.{2227a280 ...

  8. linux学习之硬盘的存储原理和内部架构

    原文地址:https://blog.csdn.net/tanggao1314/article/details/52074735 首先,让我们看一下硬盘的发展史: 1956年9月13日,IBM的IBM ...

  9. [NOI2004]郁闷的出纳员(到底是谁郁闷啊?)

    一道 FHQ treap 的裸水题,卡了这么久.(咦~一看就是修为不够)   题解什么的,不用看的(话说那我为什么要写这篇题解咧...),直接 FHQ 模板腾上去就能秒 A 了(打脸)   谈谈 de ...

  10. 转载:UML学习(二)-----类图(silent)

    原文:http://www.cnblogs.com/huiy/p/8552607.html 1.什么是类图 类图(Class diagram)主要用于描述系统的结构化设计.类图也是最常用的UML图,用 ...