MapReduce过程<原创>
一、预处理阶段
二、Map阶段
一个Map任务被JobTracker(管家)分配到多个TaskTracker(弟弟)执行,如下图所示,弟弟的map()只负责拆分,虽然map()输出两个相同的键值对,但它并不会对两个重复的键值对进行合并,而且输出的键值对也是无序的,没有按照字母顺序排列。而这些工作都会交给Shuffle(洗牌)阶段去做。
三、Shuffle阶段
Shuffle阶段实际上并不是一个和Map阶段和Reduce阶段独立的阶段,实际上它分为Map端的Shuffle阶段和Reduce端的阶段,为了方便讨论,就把这个两个子阶段放在一起讨论,统称为Shuffle阶段。
(一)Map端的Shuffle阶段
每个map()任务都会被分配一块缓存,对于每个map()的输出数据,不是直接写入磁盘,而是先写入缓存里,当缓存达到一定比例时对它进行溢写操作,将溢写好的数据进行归并(、合并)发送到本地磁盘,并清空该数据占用的缓存,还在执行的map()们可以继续不停地将结果写入缓存。之所以这样设计,是为了减少I/O消耗,节省了时间。
溢写,包括分区(Partiyion)、排序(Sort)、合并(Combine)。溢写过程,是在缓存中完成的。
看过巨佬的博客之后对错误的理解进行了更正:每个分区含有多个不同key值的键值对,而不是一个分区只含有一种key值对应的多个键值对。举例:
1分区: < Hello ,1> <Hello ,1 > <Hadoop ,1 > , 2分区:<World ,1 > <World ,1>
即key值为Hello的键值对全部被分到1分区,其他分区不会存在key值为Hello的键值对,而1分区除了Hello还有多个其他的key值的键值对存在。
合并(Combine)与归并(Merge)的区别:
合并是针对每个分区内部的键值对的操作,而归并是针对磁盘中的多个溢写文件的操作,将多个溢写文件归并成一个大的溢写文件。
对于两个键值对< a ,1 >和< a ,1>,合并的结果是 <a , 2 >:合并实际上就是在map端执行reduce的操作,是为了减少网络传输开销,但是并不是所有的情况都能使用合并操作,可通过调用job.setCombinerClass
(MyReduce.class)设置这一操作;
而归并的结果是<a,<1,1>>,合并是不是默认MapReduce的默认操作,归并是默认操作。归并的结果是可以继续合并再作为最终结果发送到本地磁盘作为Reduce的输入的。
(二)Reduce端的Shuffle阶段
1.领取数据
Map端的Shuffle阶段将合并或归并好的数据发送到本地磁盘里。在Map任务开始后,Reduce会不断的通过RPC通信协议来询问JobTracker(管家),Map任务是否已经完成。JobTracker检测到一个Map任务完成后会通知相关的Reduce来领取属于自己的数据。一般系统中会存在多个Map机器,Reduce需要使用多线程同时从多个Map机器领取数据。
2.归并、输出
尽管每个map()都在之前进行过合并、归并处理,但当Reduce从多个Map机器中领取回数据后,Reduce机器的缓冲中又存在着相同的可以合并的键值对、具有相同key值的键值对也会被归并。在这个阶段,合并也不是默认的,需要用户自定义。和Map端的Shuffle阶段不同的是,当前阶段生成多个文件发送给Reduce阶段。
三、Reduce阶段
对不同分区的相同key对应的值进行相加,输出最后的结果。并写入到HDFS系统中,也就是写入磁盘。
一定要看:
巨佬博客(一看就懂系列):https://www.cnblogs.com/npumenglei/p/3631244.html
MapReduce过程<原创>的更多相关文章
- MapReduce过程(包括Shuffle)详解
首先,map的输入数据默认一个一个的键值对,键就是每一行首字母的偏移量,值就是每一行的值了. 然后每一个输入的键值对都会用我们定义的map函数去处理,这里用wordcount来举例的话就是,每一个键值 ...
- MapReduce过程详解(基于hadoop2.x架构)
本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapredu ...
- Hadoop - MapReduce 过程
Hadoop - MapReduce 一.MapReduce设计理念 map--->映射 reduce--->归纳 mapreduce必须构建在hdfs之上的一种大数据离线计算框架 在线: ...
- MapReduce 过程详解
Hadoop 越来越火, 围绕Hadoop的子项目更是增长迅速, 光Apache官网上列出来的就十几个, 但是万变不离其宗, 大部分项目都是基于Hadoop common MapReduce 更是核心 ...
- WordCount示例深度学习MapReduce过程(1)
我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,Wou ...
- 关于mapreduce过程中出现的错误:Too many fetch-failures
Reduce task启动后第一个阶段是shuffle,即向map端fetch数据.每次fetch都可能因为connect超时,read超时,checksum错误等原因而失败.Reduce task为 ...
- hadoop的mapreduce过程
http://www.cnblogs.com/sharpxiajun/p/3151395.html 下面我从逻辑实体的角度讲解mapreduce运行机制,这些按照时间顺序包括:输入分片(input s ...
- MapReduce过程详解及其性能优化
http://blog.csdn.net/aijiudu/article/details/72353510 废话不说直接来一张图如下: 从JVM的角度看Map和Reduce Map阶段包括: 第一读数 ...
- WordCount示例深度学习MapReduce过程
转自: http://blog.csdn.net/yczws1/article/details/21794873 . 我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测 ...
随机推荐
- Java实现鼠标随机移动
---恢复内容开始--- 以前在公司工作的时候,电脑限制重重,不允许改锁屏时间,又不允许下载和安装软件. 需要在家办公support的时候,又没有什么事,但还是必须在线,所以就写了个小程序让鼠标自己随 ...
- C. Playlist Educational Codeforces Round 62 (Rated for Div. 2) 贪心+优先队列
C. Playlist time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...
- 面试总结——JVM篇
前言:该篇主要对Java虚拟机相关的题目进行介绍. JVM篇 基本上在面试的时候,都会或多或少的涉及JVM,主要看面试官的侧重点,笔者在面试过程中,是通过volatile问题,引导了JVM相关问题上的 ...
- 使用IntelliJ IDEA和Maven管理搭建Web开发环境(以Spring MVC为例)(一)
前言:原来一直使用MyEclipse,换工作后,新公司使用IDEA,初识IDEA发现,哇,它的快捷键可真多啊,但是一路用下来,觉得非常的好用,特别是利用Maven管理,那简直叫一个爽.当然笔者在使用过 ...
- 【HNOI2016】大数
[HNOI2016]大数 题目链接 题目描述 小 B 有一个很大的数 $ S $,长度达到了 $ N $ 位:这个数可以看成是一个串,它可能有前导 $ 0 $,例如 00009312345 .小 B ...
- SpringBoot系列之三_一个完整的MVC案例
这一节让我们来做一个完整的案例. 我们将使用MyBatis作为ORM框架,并以非常简单的方式来使用MyBatis,完成一个完整的MVC案例. 此案例承接上一节,请先搭建好上一节案例. 一.数据库准备 ...
- P2689 东南西北
题目描述 给出起点和终点的坐标及接下来T个时刻的风向(东南西北),每次可以选择顺风偏移1个单位或者停在原地.求到达终点的最少时间. 如果无法偏移至终点,输出“-1”. 输入输出格式 输入格式: 第一行 ...
- ROS 小乌龟测试
教程 1.维基 http://wiki.ros.org/cn/ROS/Tutorials 2. 创客智造 http://www.ncnynl.com/category/ros-junior-tutor ...
- package-info.java的使用
一.引入 上文中,提到了注解类JyzTargetPackage可以定义为@Target(ElementType.PACKAGE),可是在被注解类里我无论怎么加,编译器都报错,于是引入了package- ...
- django如何语法高亮模块
首先,django的语法高亮必须配合markdown模块使用. 注意事项: 确保在渲染文本时添加了 markdown.extensions.codehilite 拓展 确保安装了 Pygments. ...