MapReduce过程<原创>
一、预处理阶段
二、Map阶段
一个Map任务被JobTracker(管家)分配到多个TaskTracker(弟弟)执行,如下图所示,弟弟的map()只负责拆分,虽然map()输出两个相同的键值对,但它并不会对两个重复的键值对进行合并,而且输出的键值对也是无序的,没有按照字母顺序排列。而这些工作都会交给Shuffle(洗牌)阶段去做。
三、Shuffle阶段
Shuffle阶段实际上并不是一个和Map阶段和Reduce阶段独立的阶段,实际上它分为Map端的Shuffle阶段和Reduce端的阶段,为了方便讨论,就把这个两个子阶段放在一起讨论,统称为Shuffle阶段。
(一)Map端的Shuffle阶段
每个map()任务都会被分配一块缓存,对于每个map()的输出数据,不是直接写入磁盘,而是先写入缓存里,当缓存达到一定比例时对它进行溢写操作,将溢写好的数据进行归并(、合并)发送到本地磁盘,并清空该数据占用的缓存,还在执行的map()们可以继续不停地将结果写入缓存。之所以这样设计,是为了减少I/O消耗,节省了时间。
溢写,包括分区(Partiyion)、排序(Sort)、合并(Combine)。溢写过程,是在缓存中完成的。
看过巨佬的博客之后对错误的理解进行了更正:每个分区含有多个不同key值的键值对,而不是一个分区只含有一种key值对应的多个键值对。举例:
1分区: < Hello ,1> <Hello ,1 > <Hadoop ,1 > , 2分区:<World ,1 > <World ,1>
即key值为Hello的键值对全部被分到1分区,其他分区不会存在key值为Hello的键值对,而1分区除了Hello还有多个其他的key值的键值对存在。
合并(Combine)与归并(Merge)的区别:
合并是针对每个分区内部的键值对的操作,而归并是针对磁盘中的多个溢写文件的操作,将多个溢写文件归并成一个大的溢写文件。
对于两个键值对< a ,1 >和< a ,1>,合并的结果是 <a , 2 >:合并实际上就是在map端执行reduce的操作,是为了减少网络传输开销,但是并不是所有的情况都能使用合并操作,可通过调用job.setCombinerClass
(MyReduce.class)设置这一操作;
而归并的结果是<a,<1,1>>,合并是不是默认MapReduce的默认操作,归并是默认操作。归并的结果是可以继续合并再作为最终结果发送到本地磁盘作为Reduce的输入的。
(二)Reduce端的Shuffle阶段
1.领取数据
Map端的Shuffle阶段将合并或归并好的数据发送到本地磁盘里。在Map任务开始后,Reduce会不断的通过RPC通信协议来询问JobTracker(管家),Map任务是否已经完成。JobTracker检测到一个Map任务完成后会通知相关的Reduce来领取属于自己的数据。一般系统中会存在多个Map机器,Reduce需要使用多线程同时从多个Map机器领取数据。
2.归并、输出
尽管每个map()都在之前进行过合并、归并处理,但当Reduce从多个Map机器中领取回数据后,Reduce机器的缓冲中又存在着相同的可以合并的键值对、具有相同key值的键值对也会被归并。在这个阶段,合并也不是默认的,需要用户自定义。和Map端的Shuffle阶段不同的是,当前阶段生成多个文件发送给Reduce阶段。
三、Reduce阶段
对不同分区的相同key对应的值进行相加,输出最后的结果。并写入到HDFS系统中,也就是写入磁盘。
一定要看:
巨佬博客(一看就懂系列):https://www.cnblogs.com/npumenglei/p/3631244.html
MapReduce过程<原创>的更多相关文章
- MapReduce过程(包括Shuffle)详解
首先,map的输入数据默认一个一个的键值对,键就是每一行首字母的偏移量,值就是每一行的值了. 然后每一个输入的键值对都会用我们定义的map函数去处理,这里用wordcount来举例的话就是,每一个键值 ...
- MapReduce过程详解(基于hadoop2.x架构)
本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapredu ...
- Hadoop - MapReduce 过程
Hadoop - MapReduce 一.MapReduce设计理念 map--->映射 reduce--->归纳 mapreduce必须构建在hdfs之上的一种大数据离线计算框架 在线: ...
- MapReduce 过程详解
Hadoop 越来越火, 围绕Hadoop的子项目更是增长迅速, 光Apache官网上列出来的就十几个, 但是万变不离其宗, 大部分项目都是基于Hadoop common MapReduce 更是核心 ...
- WordCount示例深度学习MapReduce过程(1)
我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,Wou ...
- 关于mapreduce过程中出现的错误:Too many fetch-failures
Reduce task启动后第一个阶段是shuffle,即向map端fetch数据.每次fetch都可能因为connect超时,read超时,checksum错误等原因而失败.Reduce task为 ...
- hadoop的mapreduce过程
http://www.cnblogs.com/sharpxiajun/p/3151395.html 下面我从逻辑实体的角度讲解mapreduce运行机制,这些按照时间顺序包括:输入分片(input s ...
- MapReduce过程详解及其性能优化
http://blog.csdn.net/aijiudu/article/details/72353510 废话不说直接来一张图如下: 从JVM的角度看Map和Reduce Map阶段包括: 第一读数 ...
- WordCount示例深度学习MapReduce过程
转自: http://blog.csdn.net/yczws1/article/details/21794873 . 我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测 ...
随机推荐
- IDEA: Call Hierarchy
在日常开发中,查看某个方法.字段可能被用在哪些地方.这个是个很常见的操作. 例如,在使用Eclipse时,选择方法后,右键菜单里选择 show call hierarchy,即可查看有哪些地方调用了这 ...
- GET vs. POST
GET 和 POST 都创建数组(例如,array( key => value, key2 => value2, key3 => value3, ...)).此数组包含键/值对,其中 ...
- C# -- 随机数(Random)的使用
使用随机数产生一组大乐透号码 1. C#代码 1 Console.WriteLine("===============大乐透===红色球==============="); Lis ...
- Vue学习之路7-v-on指令学习之简单事件绑定
前言 在JavaScript中任何一个DOM元素都有其自身存在的事件对象,事件对象代表事件的状态,比如事件在其中发生的元素.键盘按键的状态.鼠标的位置和鼠标按钮的状态等.事件通常与函数结合使用,函数不 ...
- March 01st, 2018 Week 9th Thursday
Let bygones be bygones. 过去的就让它过去吧. What happened has happened, it cannot be undone, so just leave it ...
- KFCM算法的matlab程序
KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...
- 设计模式のObserver Pattern(观察者模式)----行为模式
一.问题产生背景 又被称为订阅发布模式. 最初流传最广的一个面试题:有一只猫咪,猫咪叫了一声,老鼠跑了,老人惊醒了,男主人骂,小偷吓得不敢动了....这就产生一个问题的模型,当对象间存在一对多关系时, ...
- SDOI2014 R1做题笔记
SDOI2014 R1做题笔记 经过很久很久的时间,shzr又做完了SDOI2014一轮的题目. 但是我不想写做题笔记(
- 转://Linux Multipath多路径配置与使用案例
在Linux平台一部分存储产品使用操作系统自带的多路径软件,包括最常见的HP和IBM的部分存储产品,在Linux自带的多路径软件叫做multipath,这篇文章以HP EVA系列存储在Linux平台的 ...
- Linux:Day3 文件系统
Linux的文件系统: 根文件系统(rootfs):root filesystem /boot:引导文件存放目录:内核文件(vmlinuz).引导加载器(bootloader,grub)都存放于此目录 ...