题目链接:http://poj.org/problem?id=1061

青蛙的约会
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 131879   Accepted: 29100

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

题意如上
解题思路:两只青蛙要相遇,所以可以得出(x+m*t)mod L=(y+n*t) mod L,可以转化为(n-m)*t+L*k=x-y,套用扩展欧几里得模板就可以解除此方程,不过我们要将它转化成最小正整数解。
代码:
#include<iostream.h>
#include<cstdio>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
//a*x+b*y=gcd(a,b);
//x=y1,y=x1-a/b*y1;
void exgcd(ll a,ll b,ll &x,ll &y,ll &c)
{
if(!b){
x=; y=; c=a; return;
}
exgcd(b,a%b,y,x,c);
y-=a/b*x;
}
//(n-m)*t+k*L=x-y;
ll n,m,x,y,L;
int main()
{
while(cin>>x>>y>>m>>n>>L)
{
ll a=n-m,b=L;
ll c=x-y;
if(c%gcd(a,b)!=){
puts("Impossible");
continue;
}
ll t,k,d;
exgcd(a,L,t,k,d);
//d=gcd(a,L)
//a*t+L*k=gcd(a,L) -> a*t*c/gcd(a,L)+L*k*c/gcd(a,L)=c
t=t*(c/d);
t=(t%(L/d)+L/d)%(L/d); //化成最小正整数解
cout<<t<<endl;
}
return ;
}

POJ1061 青蛙的约会(扩展欧几里得)的更多相关文章

  1. [poj1061]青蛙的约会<扩展欧几里得>

    题目链接:http://poj.org/problem?id=1061 其实欧几里得我一直都知道,只是扩展欧几里得有点蒙,所以写了一道扩展欧几里得裸题. 欧几里得算法就是辗转相除法,求两个数的最大公约 ...

  2. POJ1061青蛙的约会[扩展欧几里得]

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Descript ...

  3. POJ1061 青蛙的约会 扩展欧几里得

    模板题,这题有一点需要注意,因为要求非负,ax=b(mod L) 得保证 a>=0 #include <stdio.h> #include <iostream> #inc ...

  4. pku 1061 青蛙的约会 扩展欧几里得

    青蛙的约会Time Limit: 1000MS Memory Limit: 10000KTotal Submissions: 120482 Accepted: 25449Description 两只青 ...

  5. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  6. JZYZOJ1371 青蛙的约会 扩展欧几里得 GTMD数论

    http://172.20.6.3/Problem_Show.asp?id=1371 题意是两个青蛙朝同一个方向跳 http://www.cnblogs.com/jackge/archive/2013 ...

  7. Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)

    一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...

  8. POJ - 1061 青蛙的约会 扩展欧几里得 + (贝祖公式)最小正整数解

    题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写, ...

  9. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  10. [P1516]青蛙的约会 (扩展欧几里得/中国剩余定理?)

    每日做智推~ 一看就是一道数学题. 再看是一道公约数的题目. 标签是中国孙子定理. 题解是扩展欧几里得 (笑) 一开始没看数据范围 只有50分 开一个longlong就可以了 #include< ...

随机推荐

  1. 双击启动tomcat中的startup.bat闪退原因及解决方法

    免安装的tomcat双击startup.bat后,启动窗口一闪而过,而且tomcat服务未启动. 原因是:在启动tomcat是,需要读取环境变量和配置信息,缺少了这些信息,就不能登记环境变量,导致了t ...

  2. C#复习笔记(2)--C#1所搭建的核心基础

    通过对C#1所搭建的核心基础的深入了解,可以知道之后的C#版本在C#1的基础上做了很多扩展,而这些扩展都是基于C#搭建的核心基础而来的. 委托 一.编写委托的过程 委托经常和C语言的“函数指针”挂钩. ...

  3. C#设计模式之3:观察者模式

    C#中已经实现了观察者模式,那就是事件,事件封装了委托,使得委托的封装性更好,在类的内部定义事件,然后在客户端对事件进行注册: public class Subject { public event ...

  4. Oracle 序列(sequence)

    序列(sequence) 是Oracle提供的用于生成一系列唯一数字的数据库对象.它会自动生成顺序递增或者递减的序列号,以实现自动提供唯一的主键值.序列可以在多用户并发环境中使用,并且可以为所有用户生 ...

  5. [转帖]Linux下fork函数及pthread函数的总结

    Linux下fork函数及pthread函数的总结 https://blog.csdn.net/wangdd_199326/article/details/76180514 fork Linux多进程 ...

  6. 打印module查看参数

    module1下的index.js require('./test2') main.js require('./module1')和require('./module2') 打印每个文件的module ...

  7. java使用顺序存储实现队列

    详细连接  https://blog.csdn.net/ljxbbss/article/details/78135993 操作系统:当电脑卡的时候,如果不停点击,还是卡死,最后终于电脑又好了以后,操作 ...

  8. RabbitMQ基本操作

    更加详细的 链接https://www.cnblogs.com/dwlsxj/p/RabbitMQ.html RabbitMQ基础知识 一.背景 RabbitMQ是一个由erlang开发的AMQP(A ...

  9. springMVC中@RequestParam和@RequestBody的作用

    @RequestParam和@RequestBody是什么区别,估计很多人还是不太清楚, 因为一般用@ RequestParam就足够传入参数了,要说他们区别,就需要知道contentType是什么? ...

  10. python爬虫之git的使用

    一.简单认识: 1.初始化文件夹为版本控制文件夹,首先建立一个文件夹,进入这个文件夹以后输入git init初始化这个文件夹. 2.Git几种位置概念 1.本地代码:本地更改完代码以后,虽然是存放在g ...